Free Access
Issue
ESAIM: M2AN
Volume 44, Number 3, May-June 2010
Page(s) 573 - 595
DOI https://doi.org/10.1051/m2an/2010012
Published online 04 February 2010
  1. R.P. Agarwal, Difference equations and inequalities, Monographs and Textbooks in pure and applied mathematics. Marcel Dekker, New York, USA (1992). [Google Scholar]
  2. H. Andréasson and G. Rein, A numerical investigation of stability states and critical phenomena for the spherically symmetric Einstein-Vlasov system. Class. Quant. Grav. 23 (2006) 3659–3677. [CrossRef] [Google Scholar]
  3. F. Bastin and P. Laubin, Regular compactly supported wavelets in Sobolev spaces. Duke Math. J. 87 (1996) 481–508. [CrossRef] [Google Scholar]
  4. M.L. Bégué, A. Ghizzo, P. Bertrand, E. Sonnendrücker and O. Coulaud, Two dimensional semi-Lagrangian Vlasov simulations of laser-plasma interaction in the relativistic regime. J. Plasma Phys. 62 (1999) 367–388. [CrossRef] [Google Scholar]
  5. N. Besse, Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM J. Numer. Anal. 42 (2004) 350–382. [CrossRef] [MathSciNet] [Google Scholar]
  6. N. Besse, Convergence of a high-order semi-Lagrangian scheme with propagation of gradients for the Vlasov-Poisson system. SIAM J. Numer. Anal. 46 (2008) 639–670. [CrossRef] [MathSciNet] [Google Scholar]
  7. N. Besse and P. Bertrand, Gyro-water-bag approch in nonlinear gyrokinetic turbulence. J. Comput. Phys. 228 (2009) 3973–3995. [CrossRef] [MathSciNet] [Google Scholar]
  8. N. Besse and M. Mehrenberger, Convergence of classes of high-order semi-Lagrangian schemes for the Vlasov-Poisson system. Math. Comp. 77 (2008) 93–123. [CrossRef] [MathSciNet] [Google Scholar]
  9. N. Besse and E. Sonnendrücker, Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space. J. Comput. Phys. 191 (2003) 341–376. [CrossRef] [MathSciNet] [Google Scholar]
  10. N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker and P. Bertrand, A Wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system. J. Comput. Phys. 227 (2008) 7889–7916. [CrossRef] [MathSciNet] [Google Scholar]
  11. C.K. Birdsall and A.B. Langdon, Plasmas physics via computer simulation. McGraw-Hill, USA (1985). [Google Scholar]
  12. C.Z. Cheng and G. Knorr, The integration of the Vlasov equation in configuration space. J. Comput Phys. 22 (1976) 330–351. [NASA ADS] [CrossRef] [Google Scholar]
  13. M.W. Choptuik, Universality and scaling in gravitational collapse of a scalar field. Phys. Rev. Lett. 70 (1993) 9–12. [CrossRef] [PubMed] [Google Scholar]
  14. M.W. Choptuik and I. Obarrieta, Critical phenomena at the threshold of black hole formation for collisionless matter in spherical symmetry. Phys. Rev. D 65 (2001) 024007. [CrossRef] [Google Scholar]
  15. M.W. Choptuik, T. Chmaj and P. Bizoń, Critical behaviour in gravitational collapse of a Yang-Mills field. Phys. Rev. Lett. 77 (1996) 424–427. [CrossRef] [PubMed] [Google Scholar]
  16. Y. Choquet-Bruhat, Problème de Cauchy pour le système intégro-différentiel d'Einstein–Liouville. Ann. Inst. Fourier 21 (1971) 181–201. [Google Scholar]
  17. A. Cohen, Numerical analysis of wavelet methods, Studies in mathematics and its applications 32. Elsevier, North-Holland (2003). [Google Scholar]
  18. J.M. Dawson, Particle simulation of plasmas. Rev. Modern Phys. 55 (1983) 403–447. [NASA ADS] [CrossRef] [Google Scholar]
  19. K. Ganguly and H. Victory, On the convergence for particle methods for multidimensional Vlasov-Poisson systems. SIAM J. Numer. Anal. 26 (1989) 249-288. [CrossRef] [MathSciNet] [Google Scholar]
  20. R.T. Glassey and J. Schaeffer, Convergence of a particle method for the relativistic Vlasov-Maxwell system. SIAM J. Numer. Anal. 28 (1991) 1–25. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Rein and A.D. Rendall, Global existence of solutions of the spherically symmetric Vlasov-Einstein with small initial data. Commun. Math. Phys. 150 (1992) 561–583. [Erratum. Comm. Math. Phys. 176 (1996) 475–478.] [CrossRef] [Google Scholar]
  22. G. Rein and T. Rodewis, Convergence of a Particle-In-Cell scheme for the spherically symmetric Vlasov-Einstein system. Ind. Un. Math. J. 52 (2003) 821–861. [Google Scholar]
  23. G. Rein, A.D. Rendall and J. Schaeffer, A regularity theorem for solutions of the spherical symmetric Vlasov-Einstein system. Commun. Math. Phys. 168 (1995) 467–478. [CrossRef] [Google Scholar]
  24. G. Rein, A.D. Rendall and J. Schaeffer, Critical collapse of collisionless matter-a numerical investigation. Phys. Rev. D 58 (1998) 044007. [CrossRef] [Google Scholar]
  25. T. Rodewis, Numerical treatment of the symmetric Vlasov-Poisson and Vlasov-Einstein system by particle methods. Ph.D. Thesis, Mathematisches Institut der Ludwig-Maximilians-Universität München, Munich, Germany (1999). [Google Scholar]
  26. J. Schaeffer, Discrete approximation of the Poisson-Vlasov system. Quart. Appl. Math. 45 (1987) 59–73. [MathSciNet] [Google Scholar]
  27. S.L. Shapiro and S.A. Teukolsky, Relativistic stellar dynamics on computer I, Motivation and numerical methods. Astrophys. J. 298 (1985) 34–57. [NASA ADS] [CrossRef] [Google Scholar]
  28. S.L. Shapiro and S.A. Teukolsky, Relativistic stellar dynamics on computer II, Physical applications. Astrophys. J. 298 (1985) 58–79. [CrossRef] [Google Scholar]
  29. S.L. Shapiro and S.A. Teukolsky, Relativistic stellar dynamics on computer IV, Collapse of a stellar cluster to a black hole. Astrophys. J. 307 (1986) 575–592. [CrossRef] [Google Scholar]
  30. A. Staniforth and J. Cote, Semi-Lagrangian integration schemes for atmospheric models-a review. Mon. Weather Rev. 119 (1991) 2206–2223. [CrossRef] [Google Scholar]
  31. H.D. Victory and E.J. Allen, The convergence theory of particle-in-cell methods for multi-dimensional Vlasov-Poisson systems. SIAM J. Numer. Anal. 28 (1991) 1207–1241. [CrossRef] [MathSciNet] [Google Scholar]
  32. H.D. Victory, G. Tucker and K. Ganguly, The convergence analysis of fully discretized particle methods for solving Vlasov-Poisson systems. SIAM J. Numer. Anal. 28 (1991) 955–989. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you