Free Access
Issue
ESAIM: M2AN
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 1135 - 1153
DOI https://doi.org/10.1051/m2an/2010055
Published online 26 August 2010
  1. I. Babuška and M. Suri, The p and h-p versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994) 578–632. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825. [CrossRef] [MathSciNet] [Google Scholar]
  3. R.H. Cameron and W.T. Martin, The orthogonal development of nonlinear functionals in a series of Fourier-Hermite functions. Ann. Math. 48 (1947) 385–392. [CrossRef] [Google Scholar]
  4. Y. Cao, On convergence rate of Wiener-Ito expansion for generalized random variables. Stochastics 78 (2006) 179–187. [MathSciNet] [Google Scholar]
  5. P.G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics 40. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2002). [Google Scholar]
  6. F.W. Elliott, Jr., D.J. Horntrop and A.J. Majda, A Fourier-wavelet Monte Carlo method for fractal random fields. J. Comput. Phys. 132 (1997) 384–408. [CrossRef] [MathSciNet] [Google Scholar]
  7. T. Hida, H.-H. Kuo, J. Potthoff and L. Sreit, White noise. Kluwer Academic Publishers, Boston (1993). [Google Scholar]
  8. H. Holden, B. Øksendal, J. Ubøe and T. Zhang, Stochastic partial differential equations. Birkhäuser, Boston (1996). [Google Scholar]
  9. K. Itô, Stochastic integral. Proc. Imp. Acad. Tokyo 20 (1944) 519–524. [CrossRef] [MathSciNet] [Google Scholar]
  10. G.E. Karniadakis and S.J. Sherwin, Spectral/hp element methods for computational fluid dynamics. Second edition, Numerical Mathematics and Scientific Computation, Oxford University Press, New York (2005). [Google Scholar]
  11. Yu.G. Kondratiev, P. Leukert, J. Potthoff, L. Streit and W. Westerkamp, Generalized functionals in Gaussian spaces: the characterization theorem revisited. J. Funct. Anal. 141 (1996) 301–318. [CrossRef] [MathSciNet] [Google Scholar]
  12. H.-H. Kuo, White noise distribution theory. Probability and Stochastics Series, CRC Press, Boca Raton (1996). [Google Scholar]
  13. M. Loève, Probability theory – I, Graduate Texts in Mathematics 45. Fourth edition, Springer-Verlag, New York (1977). [Google Scholar]
  14. S.V. Lototsky and B.L. Rozovskii, Stochastic differential equations driven by purely spatial noise. SIAM J. Math. Anal. 41 (2009) 1295–1322. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Nualart, The Malliavin calculus and related topics. Second edition, Probability and its Applications (New York), Springer-Verlag, Berlin (2006). [Google Scholar]
  16. S. Pilipović and D. Seleši, Expansion theorems for generalized random processes, Wick products and applications to stochastic differential equations. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10 (2007) 79–110. [CrossRef] [MathSciNet] [Google Scholar]
  17. S. Pilipović and D. Seleši, On the generalized stochastic Dirichlet problem. Part I: The stochastic weak maximum principle. Potential Anal. 32 (2010) 363–387. [CrossRef] [MathSciNet] [Google Scholar]
  18. Ch. Schwab, p- and hp-finite element methods, Theory and applications in solid and fluid mechanics. Numerical Mathematics and Scientific Computation, Oxford University Press, New York (1998). [Google Scholar]
  19. M. Shinozuka and G. Deodatis, Simulation of stochastic processes by spectral representation. AMR 44 (1991) 191–204. [MathSciNet] [Google Scholar]
  20. T.G. Theting, Solving Wick-stochastic boundary value problems using a finite element method. Stochastics Stochastics Rep. 70 (2000) 241–270. [MathSciNet] [Google Scholar]
  21. G. Våge, Variational methods for PDEs applied to stochastic partial differential equations. Math. Scand. 82 (1998) 113–137. [MathSciNet] [Google Scholar]
  22. X. Wan, B. Rozovskii and G.E. Karniadakis, A stochastic modeling methodology based on weighted Wiener chaos and Malliavin calculus. Proc. Natl. Acad. Sci. USA 106 (2009) 14189–14194. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you