Free Access
Issue
ESAIM: M2AN
Volume 45, Number 5, September-October 2011
Page(s) 803 - 824
DOI https://doi.org/10.1051/m2an/2010103
Published online 23 February 2011
  1. E. Cancès, C. Le Bris and Y. Maday, Méthodes Mathématiques en Chimie Quantique. Springer (2006). [Google Scholar]
  2. H.-J. Flad, W. Hackbusch and R. Schneider, Best N-term approximation in electronic structure calculations. I. One-electron reduced density matrix. ESAIM: M2AN 40 (2006) 49–61. [Google Scholar]
  3. H.-J. Flad, W. Hackbusch and R. Schneider, Best N-term approximation in electronic structure calculations. II. Jastrow factors. ESAIM: M2AN 41 (2007) 261–279. [Google Scholar]
  4. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergard Sørensen, Sharp regularity estimates for Coulombic many-electron wave functions. Commun. Math. Phys. 255 (2005) 183–227. [CrossRef] [Google Scholar]
  5. S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergard Sørensen, Analytic structure of many-body Coulombic wave functions. Commun. Math. Phys. 289 (2009) 291–310. [CrossRef] [Google Scholar]
  6. T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic Structure Theory. John Wiley & Sons (2000). [Google Scholar]
  7. M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and T. Østergard Sørensen, Electron wavefunctions and densities for atoms. Ann. Henri Poincaré 2 (2001) 77–100. [CrossRef] [MathSciNet] [Google Scholar]
  8. E.A. Hylleraas, Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium. Z. Phys. 54 (1929) 347–366. [Google Scholar]
  9. W. Kohn, Nobel lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71 (1999) 1253–1266. [NASA ADS] [CrossRef] [Google Scholar]
  10. W. Kutzelnigg, r12-dependent terms in the wave function as closed sums of partial wave amplitudes for large l. Theor. Chim. Acta 68 (1985) 445–469. [CrossRef] [Google Scholar]
  11. W. Kutzelnigg and W. Klopper, Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory. J. Chem. Phys. 94 (1991) 1985–2001. [CrossRef] [Google Scholar]
  12. C. Le Bris Ed., Handbook of Numerical Analysis, Computational Chemistry X. North Holland (2003). [Google Scholar]
  13. C. Le Bris, Computational chemistry from the perspective of numerical analysis. Acta Numer. 14 (2005) 363–444. [Google Scholar]
  14. A.J. O'Connor, Exponential decay of bound state wave functions. Commun. Math. Phys. 32 (1973) 319–340. [CrossRef] [Google Scholar]
  15. J. Pople, Nobel lecture: Quantum chemical models. Rev. Mod. Phys. 71 (1999) 1267–1274. [CrossRef] [Google Scholar]
  16. J. Rychlewski Ed., Explicitly Correlated Wave Functions in Chemistry and Physics, Progress in Theoretical Chemistry and Physics 13. Kluwer (2003). [Google Scholar]
  17. H. Yserentant, On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004) 731–759. [CrossRef] [MathSciNet] [Google Scholar]
  18. H. Yserentant, The hyperbolic cross space approximation of electronic wavefunctions. Numer. Math. 105 (2007) 659–690. [CrossRef] [MathSciNet] [Google Scholar]
  19. H. Yserentant, Regularity and Approximability of Electronic Wave Functions, Lecture Notes in Mathematics 2000. Springer (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you