Free Access
Issue
ESAIM: M2AN
Volume 46, Number 2, November-December 2012
Page(s) 207 - 237
DOI https://doi.org/10.1051/m2an/2011041
Published online 05 October 2011
  1. O. Angulo and J.C. Lopez-Marcos, Numerical schemes for size-structured population equations. Math. Biosci. 157 (1999) 169–188. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. D. Barbolosi, A. Benabdallah, F. Hubert and F. Verga, Mathematical and numerical analysis for a model of growing metastatic tumours. Math. Biosci. 218 (2009) 1–14. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  3. D. Barbolosi, C. Faivre and S. Benzekry, Mathematical modeling of MTD and metronomic temozolomide, 2nd Workshop on Metronomic Anti-Angiogenic Chemotherapy in Paediatric Oncology (2010). [Google Scholar]
  4. C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport. Ann. Sci. Éc. Norm. Supér. 3 (1970) 185–233. [Google Scholar]
  5. R. Beals and V. Protopopescu, Abstract time-dependent transport equations. J. Math. Anal. Appl. 2 (1987) 370-405. [CrossRef] [Google Scholar]
  6. D. Barbolosi and A. Iliadis, Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK–PD model. Comput. Biol. Med. 31 (2001) 157–172. [CrossRef] [PubMed] [Google Scholar]
  7. S. Benzekry, Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis, J. Evol. Equ. 11 (2011) 187–213. [Google Scholar]
  8. S. Benzekry, Passing to the limit 2D-1D in a model for metastatic growth, to appear in J. Biol. Dyn., doi:10.1080/17513758.2011.568071. [Google Scholar]
  9. F. Billy, B. Ribba, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, J. Boissel, E. Grenier and J. Flandrois, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol. 260 (2009) 545–562. [CrossRef] [PubMed] [Google Scholar]
  10. F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation. Differential Integral Equations 18 (2005) 891–934. [MathSciNet] [Google Scholar]
  11. A. Devys, T. Goudon and P. Laffitte, A model describing the growth and the size distribution of multiple metastatic tumours. Discret. Contin. Dyn. Syst. Ser. B 12 (2009) 731–767. [CrossRef] [Google Scholar]
  12. A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191 (2004) 159–184. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  13. A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumours. Math. Biosci. 222 (2009) 13–26. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  14. M. Doumic, Analysis of a population model structured by the cells molecular content. Math. Model. Nat. Phenom. 2 (2007) 121–152. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  15. J.M.L Ebos, C.R. Lee, W. Cruz-Munoz, G.A. Bjarnason, J.G. Christensen and R.S. Kerbel, Accelerated metastasis after short-term treatment with a potent inhibitor of tumour angiogenesis. Cancer Cell 15 (2009) 232–239. [CrossRef] [PubMed] [Google Scholar]
  16. J. Folkman, Antiangiogenesis: new concept for therapy of solid tumours. Ann. Surg. 175 (1972) [Google Scholar]
  17. P. Hahnfeldt, D. Panigraphy, J. Folkman and L. Hlatky, Tumour development under angiogenic signaling: a dynamical theory of tumour growth, treatment, response and postvascular dormancy. Cancer Res. 59 (1999) 4770–4775. [PubMed] [Google Scholar]
  18. P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term tumour burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J. Theor. Biol. 220 (2003) 545–554. [Google Scholar]
  19. K. Iwata, K. Kawasaki and N. Shigesada, A dynamical model for the growth and size distribution of multiple metastatic tumours. J. Theor. Biol. 203 (2000) 177–186. [Google Scholar]
  20. R.K. Jain, Normalizing tumour vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature Med. 7 (2001) 987–989. [Google Scholar]
  21. F. Lignet, S. Benzekry, F. Billy, B. Cajavec Bernard, O. Saut, M. Tod, P. Girard, G. Freyer, E. Grenier, T. Colin and B. Ribba, Identifying optimal combinations of anti-angiogenesis drugs and chemotherapies using a theoretical model of vascular tumour growth (in preparation). [Google Scholar]
  22. M. Paez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Vinals, M. Inoue, G. Bergers, D. Hanahan and O. Casanovas, Antiangiogenic therapy elicits malignant progression of tumours to increased local invasion and distant metastasis. Cancer Cell 15 (2009) 220–231. [Google Scholar]
  23. B. Perthame, Transport equations in biology. Frontiers in Mathematics, Birkhaüser Verlag, Basel (2007). [Google Scholar]
  24. G.J. Riely et al., Randomized phase II study of pulse erlotinib before or after carboplatin and paclitaxel in current or former smokers with advanced non-small-cell lung cancer. J. Clin. Oncol. (2009) 264–270. [Google Scholar]
  25. G.W. Swan, Applications of optimal control theory in biomedicine. Math. Biosci. 101 (1990) 237–284. [CrossRef] [PubMed] [Google Scholar]
  26. S.L. Tucker and S.O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math. 48 (1988) 549–591. [CrossRef] [MathSciNet] [Google Scholar]
  27. B. You, C. Meille, D. Barbolosi, B. tranchand, J. Guitton, C. Rioufol, A. Iliadis and G. Freyer, A mechanistic model predicting hematopoiesis and tumour growth to optimize docetaxel + epirubicin (ET) administration in metastatic breast cancer (MBC): Phase I trial. J. Clin. Oncol.(Meeting abstracts) 25 (2007) 13013. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you