Free Access
Volume 46, Number 2, November-December 2012
Page(s) 207 - 237
Published online 05 October 2011
  1. O. Angulo and J.C. Lopez-Marcos, Numerical schemes for size-structured population equations. Math. Biosci. 157 (1999) 169–188. [CrossRef] [MathSciNet] [PubMed]
  2. D. Barbolosi, A. Benabdallah, F. Hubert and F. Verga, Mathematical and numerical analysis for a model of growing metastatic tumours. Math. Biosci. 218 (2009) 1–14. [CrossRef] [MathSciNet] [PubMed]
  3. D. Barbolosi, C. Faivre and S. Benzekry, Mathematical modeling of MTD and metronomic temozolomide, 2nd Workshop on Metronomic Anti-Angiogenic Chemotherapy in Paediatric Oncology (2010).
  4. C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport. Ann. Sci. Éc. Norm. Supér. 3 (1970) 185–233.
  5. R. Beals and V. Protopopescu, Abstract time-dependent transport equations. J. Math. Anal. Appl. 2 (1987) 370-405. [CrossRef]
  6. D. Barbolosi and A. Iliadis, Optimizing drug regimens in cancer chemotherapy: a simulation study using a PK–PD model. Comput. Biol. Med. 31 (2001) 157–172. [CrossRef] [PubMed]
  7. S. Benzekry, Mathematical analysis of a two-dimensional population model of metastatic growth including angiogenesis, J. Evol. Equ. 11 (2011) 187–213.
  8. S. Benzekry, Passing to the limit 2D-1D in a model for metastatic growth, to appear in J. Biol. Dyn., doi:10.1080/17513758.2011.568071.
  9. F. Billy, B. Ribba, O. Saut, H. Morre-Trouilhet, T. Colin, D. Bresch, J. Boissel, E. Grenier and J. Flandrois, A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J. Theor. Biol. 260 (2009) 545–562. [CrossRef] [PubMed]
  10. F. Boyer, Trace theorems and spatial continuity properties for the solutions of the transport equation. Differential Integral Equations 18 (2005) 891–934. [MathSciNet]
  11. A. Devys, T. Goudon and P. Laffitte, A model describing the growth and the size distribution of multiple metastatic tumours. Discret. Contin. Dyn. Syst. Ser. B 12 (2009) 731–767. [CrossRef]
  12. A. d'Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999). Math. Biosci. 191 (2004) 159–184. [CrossRef] [MathSciNet] [PubMed]
  13. A. d'Onofrio, U. Ledzewicz, H. Maurer and H. Schättler, On optimal delivery of combination therapy for tumours. Math. Biosci. 222 (2009) 13–26. [CrossRef] [MathSciNet] [PubMed]
  14. M. Doumic, Analysis of a population model structured by the cells molecular content. Math. Model. Nat. Phenom. 2 (2007) 121–152. [CrossRef] [EDP Sciences] [MathSciNet]
  15. J.M.L Ebos, C.R. Lee, W. Cruz-Munoz, G.A. Bjarnason, J.G. Christensen and R.S. Kerbel, Accelerated metastasis after short-term treatment with a potent inhibitor of tumour angiogenesis. Cancer Cell 15 (2009) 232–239. [CrossRef] [PubMed]
  16. J. Folkman, Antiangiogenesis: new concept for therapy of solid tumours. Ann. Surg. 175 (1972)
  17. P. Hahnfeldt, D. Panigraphy, J. Folkman and L. Hlatky, Tumour development under angiogenic signaling: a dynamical theory of tumour growth, treatment, response and postvascular dormancy. Cancer Res. 59 (1999) 4770–4775. [PubMed]
  18. P. Hahnfeldt, J. Folkman and L. Hlatky, Minimizing long-term tumour burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J. Theor. Biol. 220 (2003) 545–554. [CrossRef] [PubMed]
  19. K. Iwata, K. Kawasaki and N. Shigesada, A dynamical model for the growth and size distribution of multiple metastatic tumours. J. Theor. Biol. 203 (2000) 177–186. [CrossRef] [PubMed]
  20. R.K. Jain, Normalizing tumour vasculature with anti-angiogenic therapy: A new paradigm for combination therapy. Nature Med. 7 (2001) 987–989. [CrossRef] [PubMed]
  21. F. Lignet, S. Benzekry, F. Billy, B. Cajavec Bernard, O. Saut, M. Tod, P. Girard, G. Freyer, E. Grenier, T. Colin and B. Ribba, Identifying optimal combinations of anti-angiogenesis drugs and chemotherapies using a theoretical model of vascular tumour growth (in preparation).
  22. M. Paez-Ribes, E. Allen, J. Hudock, T. Takeda, H. Okuyama, F. Vinals, M. Inoue, G. Bergers, D. Hanahan and O. Casanovas, Antiangiogenic therapy elicits malignant progression of tumours to increased local invasion and distant metastasis. Cancer Cell 15 (2009) 220–231. [CrossRef] [PubMed]
  23. B. Perthame, Transport equations in biology. Frontiers in Mathematics, Birkhaüser Verlag, Basel (2007).
  24. G.J. Riely et al., Randomized phase II study of pulse erlotinib before or after carboplatin and paclitaxel in current or former smokers with advanced non-small-cell lung cancer. J. Clin. Oncol. (2009) 264–270.
  25. G.W. Swan, Applications of optimal control theory in biomedicine. Math. Biosci. 101 (1990) 237–284. [CrossRef] [PubMed]
  26. S.L. Tucker and S.O. Zimmerman, A nonlinear model of population dynamics containing an arbitrary number of continuous structure variables. SIAM J. Appl. Math. 48 (1988) 549–591. [CrossRef] [MathSciNet]
  27. B. You, C. Meille, D. Barbolosi, B. tranchand, J. Guitton, C. Rioufol, A. Iliadis and G. Freyer, A mechanistic model predicting hematopoiesis and tumour growth to optimize docetaxel + epirubicin (ET) administration in metastatic breast cancer (MBC): Phase I trial. J. Clin. Oncol.(Meeting abstracts) 25 (2007) 13013.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you