Free Access
Volume 46, Number 2, November-December 2012
Page(s) 491 - 511
Published online 19 December 2011
  1. W. Alt, The Lagrange-Newton method for infinite-dimensional optimization problems. Numer. Funct. Anal. Optim. 11 (1990) 201–224. [CrossRef] [MathSciNet]
  2. A.C. Antoulas, Approximation of Large-Scale Dynamical Systems. Advances in Design and Control, SIAM, Philadelphia (2005).
  3. N. Arada, E. Casas and F. Tröltzsch. Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201–229. [CrossRef] [MathSciNet]
  4. E. Arian, M. Fahl and E.W. Sachs, Trust-region proper orthogonal decomposition for flow control. Technical Report 2000-25, ICASE (2000).
  5. J.A. Atwell, J.T. Borggaard and B.B. King, Reduced order controllers for Burgers’ equation with a nonlinear observer. Int. J. Appl. Math. Comput. Sci. 11 (2001) 1311–1330. [MathSciNet]
  6. P. Benner and E.S. Quintana-Ortí, Model reduction based on spectral projection methods, in Reduction of Large-Scale Systems, Lect. Notes Comput. Sci. Eng. 45, edited by P. Benner, V. Mehrmann and D.C. Sorensen (2005) 5–48.
  7. P. Deuflhard, Newton Methods for Nonlinear Problems : Affine Invariance and Adaptive Algorithms, Springer Series in Comput. Math. 35 (2004).
  8. L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island 19 (2002).
  9. R.S. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974) 963–971. [CrossRef] [MathSciNet]
  10. T. Gänzler, S. Volkwein and M. Weiser, SQP methods for parameter identification problems arising in hyperthermia. Optim. Methods Softw. 21 (2006) 869–887. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  11. M. Hintermüller, On a globalized augmented Lagrangian SQP-algorithm for nonlinear optimal control problems with box constraints, in Fast solution methods for discretized optimization problems, International Series of Numerical Mathematics. edited by K.-H. Hoffmann, R.H.W. Hoppe and V. Schulz, Birkhäuser publishers, Basel 138 (2001) 139–153.
  12. M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39 (2008) 319–345. [CrossRef] [MathSciNet]
  13. A. Kröner and B. Vexler, A priori error estimates for elliptic optimal control problems with bilinear state equation. J. Comput. Appl. Math. 230 (2009) 781–802. [CrossRef]
  14. K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems. ESAIM : M2AN 42 (2008) 1–23. [CrossRef] [EDP Sciences]
  15. H.V. Ly and H.T. Tran, Modeling and control of physical processes using proper orthogonal decomposition. Math. Comput. Model. 33 (2001) 223–236. [CrossRef]
  16. K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear control problems, in Mathematical Programming with Data Perturbation, edited by A.V. Fiacco and M. Dekker. Inc., New York (1997) 253–284.
  17. A.T. Patera and G. Rozza, Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. MIT Pappalardo Graduate Monographs in Mechanical Engineering (2006).
  18. S.S. Ravindran, Adaptive reduced order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 28 (2002) 1924–1942. [CrossRef] [MathSciNet]
  19. M. Read and B. Simon, Methods of Modern Mathematical Physics I : Functional Analysis. Academic Press, Boston (1980).
  20. E.W. Sachs and S. Volkwein, Augmented Lagrange-SQP methods with Lipschitz-continuous Lagrange multiplier updates. SIAM J. Numer. Anal. 40 (2002) 233–253. [CrossRef] [MathSciNet]
  21. L. Sirovich, Turbulence and the dynamics of coherent structures, parts I-III. Quart. Appl. Math. XLV (1987) 561–590.
  22. T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and POD a-posteriori error estimators for an elliptic linear-quadratic optimal control problem. Math. Comput. Modelling of Dynam. Systems 17 (2011) 355-369. [CrossRef] [MathSciNet]
  23. F. Tröltzsch, Optimal Control of Partial Differential Equations : Theory, Methods and Applications, Graduate Studies in Mathematics. American Mathematical Society 112 (2010).
  24. F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44 (2009) 83–115. [CrossRef]
  25. M. Vallejos and A. Borzì, Multigrid optimization methods for linear and bilinear elliptic optimal control problems. Computing 82 (2008) 31–52. [CrossRef] [MathSciNet]
  26. S. Volkwein, Mesh-independence of an augmented Lagrangian-SQP method in Hilbert spaces. SIAM J. Control Optimization 38 (2000) 767–785. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you