Free Access
Volume 46, Number 2, November-December 2012
Page(s) 491 - 511
Published online 19 December 2011
  1. W. Alt, The Lagrange-Newton method for infinite-dimensional optimization problems. Numer. Funct. Anal. Optim. 11 (1990) 201–224. [CrossRef] [MathSciNet] [Google Scholar]
  2. A.C. Antoulas, Approximation of Large-Scale Dynamical Systems. Advances in Design and Control, SIAM, Philadelphia (2005). [Google Scholar]
  3. N. Arada, E. Casas and F. Tröltzsch. Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201–229. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Arian, M. Fahl and E.W. Sachs, Trust-region proper orthogonal decomposition for flow control. Technical Report 2000-25, ICASE (2000). [Google Scholar]
  5. J.A. Atwell, J.T. Borggaard and B.B. King, Reduced order controllers for Burgers’ equation with a nonlinear observer. Int. J. Appl. Math. Comput. Sci. 11 (2001) 1311–1330. [MathSciNet] [Google Scholar]
  6. P. Benner and E.S. Quintana-Ortí, Model reduction based on spectral projection methods, in Reduction of Large-Scale Systems, Lect. Notes Comput. Sci. Eng. 45, edited by P. Benner, V. Mehrmann and D.C. Sorensen (2005) 5–48. [Google Scholar]
  7. P. Deuflhard, Newton Methods for Nonlinear Problems : Affine Invariance and Adaptive Algorithms, Springer Series in Comput. Math. 35 (2004). [Google Scholar]
  8. L.C. Evans, Partial Differential Equations, Graduate Studies in Mathematics. American Mathematical Society, Providence, Rhode Island 19 (2002). [Google Scholar]
  9. R.S. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974) 963–971. [CrossRef] [MathSciNet] [Google Scholar]
  10. T. Gänzler, S. Volkwein and M. Weiser, SQP methods for parameter identification problems arising in hyperthermia. Optim. Methods Softw. 21 (2006) 869–887. [Google Scholar]
  11. M. Hintermüller, On a globalized augmented Lagrangian SQP-algorithm for nonlinear optimal control problems with box constraints, in Fast solution methods for discretized optimization problems, International Series of Numerical Mathematics. edited by K.-H. Hoffmann, R.H.W. Hoppe and V. Schulz, Birkhäuser publishers, Basel 138 (2001) 139–153. [Google Scholar]
  12. M. Hinze and S. Volkwein, Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition. Comput. Optim. Appl. 39 (2008) 319–345. [Google Scholar]
  13. A. Kröner and B. Vexler, A priori error estimates for elliptic optimal control problems with bilinear state equation. J. Comput. Appl. Math. 230 (2009) 781–802. [CrossRef] [Google Scholar]
  14. K. Kunisch and S. Volkwein, Proper orthogonal decomposition for optimality systems. ESAIM : M2AN 42 (2008) 1–23. [Google Scholar]
  15. H.V. Ly and H.T. Tran, Modeling and control of physical processes using proper orthogonal decomposition. Math. Comput. Model. 33 (2001) 223–236. [CrossRef] [Google Scholar]
  16. K. Malanowski, C. Büskens and H. Maurer, Convergence of approximations to nonlinear control problems, in Mathematical Programming with Data Perturbation, edited by A.V. Fiacco and M. Dekker. Inc., New York (1997) 253–284. [Google Scholar]
  17. A.T. Patera and G. Rozza, Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations. MIT Pappalardo Graduate Monographs in Mechanical Engineering (2006). [Google Scholar]
  18. S.S. Ravindran, Adaptive reduced order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 28 (2002) 1924–1942. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Read and B. Simon, Methods of Modern Mathematical Physics I : Functional Analysis. Academic Press, Boston (1980). [Google Scholar]
  20. E.W. Sachs and S. Volkwein, Augmented Lagrange-SQP methods with Lipschitz-continuous Lagrange multiplier updates. SIAM J. Numer. Anal. 40 (2002) 233–253. [CrossRef] [MathSciNet] [Google Scholar]
  21. L. Sirovich, Turbulence and the dynamics of coherent structures, parts I-III. Quart. Appl. Math. XLV (1987) 561–590. [Google Scholar]
  22. T. Tonn, K. Urban and S. Volkwein, Comparison of the reduced-basis and POD a-posteriori error estimators for an elliptic linear-quadratic optimal control problem. Math. Comput. Modelling of Dynam. Systems 17 (2011) 355-369. [Google Scholar]
  23. F. Tröltzsch, Optimal Control of Partial Differential Equations : Theory, Methods and Applications, Graduate Studies in Mathematics. American Mathematical Society 112 (2010). [Google Scholar]
  24. F. Tröltzsch and S. Volkwein, POD a-posteriori error estimates for linear-quadratic optimal control problems. Comput. Optim. Appl. 44 (2009) 83–115. [CrossRef] [Google Scholar]
  25. M. Vallejos and A. Borzì, Multigrid optimization methods for linear and bilinear elliptic optimal control problems. Computing 82 (2008) 31–52. [CrossRef] [MathSciNet] [Google Scholar]
  26. S. Volkwein, Mesh-independence of an augmented Lagrangian-SQP method in Hilbert spaces. SIAM J. Control Optimization 38 (2000) 767–785. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you