Free Access
Issue |
ESAIM: M2AN
Volume 46, Number 4, July-August 2012
|
|
---|---|---|
Page(s) | 875 - 909 | |
DOI | https://doi.org/10.1051/m2an/2011070 | |
Published online | 03 February 2012 |
- N. Abboud, G. Wojcik and D.K. Vaughan, Finite element modeling for ultrasonic transducers. SPIE Int. Symp. Medical Imaging (1998). [Google Scholar]
- E. Canon and M. Lenczner, Models of elastic plates with piezoelectric inclusions part i : Models without homogenization. Math. Comput. Model. 26 (1997) 79–106. [CrossRef] [Google Scholar]
- P. Challande, Optimizing ultrasonic transducers based on piezoelectric composites using a finite-element method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 (2002) 135–140. [CrossRef] [Google Scholar]
- G.C. Cohen, Higher-order numerical methods for transient wave equations. Springer (2002). [Google Scholar]
- E. Dieulesaint and D. Royer, Elastic waves in solids, free and guided propagation. Springer (2000). [Google Scholar]
- M. Durufle, P. Grob and P. Joly, Influence of gauss and gauss-lobatto quadrature rules on the accuracy of a quadrilateral finite element method in the time domain. Numer. Methods Partial Differ. Equ. 25 (2009) 526–551. [CrossRef] [Google Scholar]
- Y. Gómez-Ullate Ricón and F.M. de Espinosa Freijo, Piezoelectric modelling using a time domain finite element program. J. Eur. Ceram. Soc. 27 (2007) 4153–4157. [CrossRef] [Google Scholar]
- T. Ikeda, Fundamentals of piezoelectricity. Oxford science publications (1990). [Google Scholar]
- N.A. Kampanis, V.A. Dougalis and J.A. Ekaterinaris, Effective computational methods for wave propagation. Chapman and Hall/CRC (2008). [Google Scholar]
- T. Lahrner, M. Kaltenbacher, B. Kaltenbacher, R. Lerch and E. Leder. Fem-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55 (2008) 465–475. [CrossRef] [PubMed] [Google Scholar]
- R. Lerch, Simulation of piezoelectric devices by two-and three-dimensional finite elements. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37 (2002) 233–247. [CrossRef] [Google Scholar]
- S. Li, Transient wave propagation in a transversely isotropic piezoelectric half space. Z. Angew. Math. Phys. 51 (2000) 236–266. [CrossRef] [MathSciNet] [Google Scholar]
- D. Mercier and S. Nicaise, Existence, uniqueness, and regularity results for piezoelectric systems. SIAM J. Math. Anal. 37 (2005) 651–672. [CrossRef] [MathSciNet] [Google Scholar]
- J. San Miguel, J. Adamowski and F. Buiochi, Numerical modeling of a circular piezoelectric ultrasonic transducer radiating in water. ABCM Symposium Series in Mechatronics 2 (2005) 458–464. [Google Scholar]
- P. Monk, Finite element methods for maxwell’s equations. Oxford science publications (2003). [Google Scholar]
- J.C. Nédélec, Acoustic and electromagnetic equations : integral representations for harmonic problems. Springer (2001). [Google Scholar]
- V. Priimenko and M. Vishnevskii, An initial boundary-value problem for model electromagnetoelasticity system. J. Differ. Equ. 235 (2007) 31–55. [CrossRef] [Google Scholar]
- L. Schmerr Jr and S.J. Song, Ultrasonic nondestructive evaluation systems. Springer (2007). [Google Scholar]
- C. Weber and P. Werner, A local compactness theorem for maxwell’s equations. Math. Methods Appl. Sci. 2 (1980) 12–25. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.