Free Access
Issue
ESAIM: M2AN
Volume 46, Number 5, September-October 2012
Page(s) 1247 - 1273
DOI https://doi.org/10.1051/m2an/2012003
Published online 27 March 2012
  1. J.H. Bramble and J.E. Pasciak, A new approximation technique for div-curl systems. Math. Comp. 73 (2004) 1739–1762. [CrossRef] [MathSciNet]
  2. J.H. Bramble, R.D. Lazarov and J.E. Pasciak, Least-squares methods for linear elasticity based on a discrete minus one inner product. Comput. Methods Appl. Mech. Eng. 191 (2001) 727–744. [CrossRef]
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Series in Comput. Math. 15 (1991).
  4. F. Brezzi, T.J.R. Hughes, L.D. Marini, A. Russo and E. Süli, A priori analysis of residual-free bubbles for advection-diffusion problems. SIAM J. Numer. Anal. 36 (1999) 1933–1948. [CrossRef] [MathSciNet]
  5. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet methods II – beyond the elliptic case. Found. Comput. Math. 2 (2002) 203–245. [CrossRef] [MathSciNet]
  6. A. Cohen, W. Dahmen and R. DeVore, Adaptive wavelet schemes for nonlinear variational problems. SIAM J. Numer. Anal. 41 (2003) 1785–1823. [CrossRef] [MathSciNet]
  7. S. Dahlke, W. Dahmen and K. Urban, Adaptive wavelet methods for saddle point problems – convergence rates. SIAM J. Numer. Anal. 40 (2002) 1230–1262. [CrossRef] [MathSciNet]
  8. W. Dahmen, S. Müller and T. Schlinkmann, On an adaptive multigrid solver for convection-dominated problems, SIAM J. Sci. Comput. 23 (2001) 781–804. [CrossRef] [MathSciNet]
  9. W. Dahmen, C. Huang, C. Schwab and G. Welper, Adaptive Petrov-Galerkin methods for first order transport equations. IGPM Report 321, RWTH Aachen (2011).
  10. L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. Part II : Optimal test functions. Numer. Methods Partial Differ. Equ. 27 (2011) 70–105. [CrossRef]
  11. L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov-Galerkin methods. Part III : Adaptivity. To appear in Appl. Numer. Math. (2012).
  12. J.L. Guermond, J.T. Oden and S. Prudhomme, An interpretation of the Navier-Stokes-alpha model as a frame-indifferent Leray regularization. Physica D 177 (2003) 23–30. [CrossRef] [MathSciNet]
  13. J.-L. Guermond, J.T. Oden and S. Prudhomme, Mathematical perspectives on large eddy simulation models for turbulent flows. J. Math. Fluid Mech. 6 (2004) 194–248. [CrossRef] [MathSciNet]
  14. T. Hughes and G. Sangalli, Variational multiscale analysis : the fine-scale Green’s function, projection, optimization, localization, and stabilized methods. SIAM J. Numer. Anal. 45 (2007) 539–557. [CrossRef] [MathSciNet]
  15. V. John, S. Kaya and W. Layton, A two-level variational multiscale method for convection-diffusion equations. Comput. Methods Appl. Mech. Eng. 195 (2006) 4594–4603. [CrossRef] [MathSciNet]
  16. E. Lee and T.A. Manteuffel, FOSLL* method for the eddy current problem with three-dimensional edge singularities. SIAM J. Numer. Anal. 45 (2007) 787–809. [CrossRef] [MathSciNet]
  17. T. Manteuffel, S. McCormick, J. Ruge and J.G. Schmidt, First-order system ℒℒ (FOSLL) for general scalar elliptic problems in the plane. SIAM J. Numer. Anal. 43 (2005) 2098-2120. [CrossRef] [MathSciNet]
  18. G. Sangalli, A uniform analysis of non-symmetric and coercive linear operators. SIAM J. Math. Anal. 36 (2005) 2033–2048. [CrossRef] [MathSciNet]
  19. G. Sangalli, Robust a-posteriori estimators for advection-diffusion-reaction problems. Math. Comput. 77 (2008) 41–70. [CrossRef]
  20. R. Verfürth, Robust a-posteriori error estimators for a singularly perturbed reaction-diffusion equation. Numer. Math. 78 (1998) 479–493. [CrossRef] [MathSciNet]
  21. R. Verfürth, Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43 (2005) 1766–1782. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you