Free Access
Issue
ESAIM: M2AN
Volume 46, Number 6, November-December 2012
Page(s) 1485 - 1508
DOI https://doi.org/10.1051/m2an/2012013
Published online 13 June 2012
  1. I. Babuška and P. Chatzipantelidis, On solving elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 191 (2002) 4093–4122. [Google Scholar]
  2. I.M. Babuška, R. Tempone and G.E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations. SIAM J. Numer. Anal. 42 (2004) 800–825 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  3. I.M. Babuška, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45 (2007) 1005–1034 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Barinka, Fast Evaluation Tools for Adaptive Wavelet Schemes. Ph.D. thesis, RWTH Aachen (2005). [Google Scholar]
  5. M. Bieri and C. Schwab, Sparse high order FEM for elliptic sPDEs. Comput. Methods Appl. Mech. Eng. 198 (2009) 1149–1170. [Google Scholar]
  6. M. Bieri, R. Andreev and C. Schwab, Sparse tensor discretization of elliptic SPDEs. SIAM J. Sci. Comput. 31 (2009/2010) 4281–4304. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Binev, W. Dahmen and R.A. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Chkifa, A. Cohen, R. DeVore and C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. Technical Report 44, SAM, ETHZ (2011). [Google Scholar]
  9. A. Cohen, W. Dahmen and R.A. DeVore, Adaptive wavelet methods for elliptic operator equations : convergence rates. Math. Comput. 70 (2001) 27–75 (electronic). [Google Scholar]
  10. A. Cohen, W. Dahmen and R.A. DeVore, Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math. 2 (2002) 203–245. [CrossRef] [MathSciNet] [Google Scholar]
  11. A. Cohen, R.A. DeVore and C. Schwab, Convergence rates of best -term Galerkin approximations for a class of elliptic sPDEs. Found. Comput. Math. 10 (2010) 615–646. [CrossRef] [MathSciNet] [Google Scholar]
  12. A. Cohen, R. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDE’s. Anal. Appl. (Singap.) 9 (2011) 11–47. [Google Scholar]
  13. S. Dahlke, M. Fornasier and T. Raasch, Adaptive frame methods for elliptic operator equations. Adv. Comput. Math. 27 (2007) 27–63. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Dahlke, T. Raasch, M. Werner, M. Fornasier and R. Stevenson, Adaptive frame methods for elliptic operator equations : the steepest descent approach. IMA J. Numer. Anal. 27 (2007) 717–740. [CrossRef] [MathSciNet] [Google Scholar]
  15. M.K. Deb, I.M. Babuška and J.T. Oden, Solution of stochastic partial differential equations using Galerkin finite element techniques. Comput. Methods Appl. Mech. Eng. 190 (2001) 6359–6372. [Google Scholar]
  16. T.J. Dijkema, C. Schwab and R. Stevenson, An adaptive wavelet method for solving high-dimensional elliptic PDEs. Constr. Approx. 30 (2009) 423–455. [CrossRef] [MathSciNet] [Google Scholar]
  17. W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Frauenfelder, C. Schwab and R.A. Todor, Finite elements for elliptic problems with stochastic coefficients. Comput. Methods Appl. Mech. Eng. 194 (2005) 205–228. [Google Scholar]
  19. T. Gantumur, H. Harbrecht and R. Stevenson, An optimal adaptive wavelet method without coarsening of the iterands. Math. Comput. 76 (2007) 615–629 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  20. W. Gautschi, Orthogonal polynomials : computation and approximation, in Numer. Math. Sci. Comput. Oxford University Press, Oxford Science Publications, New York (2004). [Google Scholar]
  21. R.G. Ghanem and P.D. Spanos, Stochastic finite elements : a spectral approach. Springer-Verlag, New York (1991). [Google Scholar]
  22. C.J. Gittelson, Adaptive Galerkin Methods for Parametric and Stochastic Operator Equations. Ph.D. thesis, ETH Dissertation No. 19533. ETH Zürich (2011). [Google Scholar]
  23. C.J. Gittelson, An adaptive stochastic Galerkin method for random elliptic operators. Math. Comput. (2011). To appear. [Google Scholar]
  24. C.J. Gittelson, Convergence Rates of Multilevel and Sparse Tensor Approximations for a Random Elliptic PDE (2012). Submitted. [Google Scholar]
  25. I.G. Graham, F.Y. Kuo, D. Nuyens, R. Scheichl and I.H. Sloan, Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications. J. Comput. Phys. 230 (2011) 3668–3694. [CrossRef] [Google Scholar]
  26. R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras I, Elementary theory, Reprint of the 1983 original, in Graduate Studies in Mathematics. Amer. Math. Soc. 15 (1997). [Google Scholar]
  27. H.G. Matthies and A. Keese, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations. Comput. Methods Appl. Mech. Eng. 194 (2005) 1295–1331. [CrossRef] [MathSciNet] [Google Scholar]
  28. A. Metselaar, Handling Wavelet Expansions in Numerical Methods. Ph.D. thesis, University of Twente (2002). [Google Scholar]
  29. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  30. F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46 (2008) 2411–2442. [CrossRef] [MathSciNet] [Google Scholar]
  31. W. Rudin, Functional analysis, 2nd edition. International Series in Pure Appl. Math. McGraw-Hill Inc., New York (1991). [Google Scholar]
  32. C. Schwab and C.J. Gittelson, Sparse tensor discretization of high-dimensional parametric and stochastic PDEs. Acta Numer. 20 (2011) 291–467. [CrossRef] [MathSciNet] [Google Scholar]
  33. R. Stevenson, Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal. 41 (2003) 1074–1100 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  34. M.H. Stone, The generalized Weierstrass approximation theorem. Math. Mag. 21 (1948) 237–254. [CrossRef] [Google Scholar]
  35. G. Szegő, Orthogonal polynomials, 4th edition, in Colloq. Publ. XXIII. Amer. Math. Soc. (1975). [Google Scholar]
  36. R.A. Todor and C. Schwab, Convergence rates for sparse chaos approximations of elliptic problems with stochastic coefficients. IMA J. Numer. Anal. 27 (2007) 232–261. [CrossRef] [MathSciNet] [Google Scholar]
  37. X. Wan and G.E. Karniadakis, An adaptive multi-element generalized polynomial chaos method for stochastic differential equations. J. Comput. Phys. 209 (2005) 617–642. [CrossRef] [Google Scholar]
  38. X. Wan and G.E. Karniadakis, Multi-element generalized polynomial chaos for arbitrary probability measures. SIAM J. Sci. Comput. 28 (2006) 901–928 (electronic). [CrossRef] [Google Scholar]
  39. X. Wan and G.E. Karniadakis, Solving elliptic problems with non-Gaussian spatially-dependent random coefficients. Comput. Methods Appl. Mech. Eng. 198 (2009) 1985–1995. [CrossRef] [Google Scholar]
  40. D. Xiu, Efficient collocational approach for parametric uncertainty analysis. Commun. Comput. Phys. 2 (2007) 293–309. [Google Scholar]
  41. D. Xiu, Numerical methods for stochastic computations : A spectral method approach. Princeton University Press, Princeton, NJ (2010). [Google Scholar]
  42. D. Xiu and J.S. Hesthaven, High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27 (2005) 1118–1139 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  43. D. Xiu and G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24 (2002) 619–644 (electronic). [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you