Free Access
Volume 46, Number 6, November-December 2012
Page(s) 1527 - 1553
Published online 13 June 2012
  1. H.C. Andersen, RATTLE : A “velocity” version of the SHAKE algorithm for molecular dynamics calculations. J. Comput. Phys. 52 (1983) 24–34. [NASA ADS] [CrossRef] [Google Scholar]
  2. C. Antoci, M. Gallati and S. Sibilla, Numerical simulation of fluid-structure interaction by SPH. 4th MIT Conference on Computational Fluid and Solid Mechanics. Comput. Struct. 85 (2007) 879–890. [CrossRef] [Google Scholar]
  3. J. Bonet and T.S.L. Lok, Variational and momentum preservation aspects of Smooth particle hydrodynamic formulations. Comput. Meth. Appl. Mech. Eng. 180 (1999) 97–115. [Google Scholar]
  4. P.A. Cundall and O.D.L. Strack, A discrete numerical model for granular assemblies. Geotech. 29 (1979) 47–65. [Google Scholar]
  5. G.A. D’Addetta, F. Kun and E. Ramm, On the application of a discrete model to the fracture process of cohesive granular materials. Granul. Matter 4 (2002) 77–90. [Google Scholar]
  6. A.T. De Hoop, A modification of Cagniard’s method for solving seismic pulse problem. Appl. Sci. Res. B 8 (1960) 349–356. [CrossRef] [Google Scholar]
  7. A.C. Eringen, Theory of micropolar elasticity, in Fracture, edited by H. Liebowitz. Academic Press, New York 2 (1968) 621–729. [Google Scholar]
  8. E.P. Fahrenthold and B.A. Horban, An improved hybrid particle-element method for hypervelocity impact simulation. Symposium on Hypervelocity Impact, Galveston. Texas (2000). Int. J. Impact Eng. 26 (2001) 169–178. [CrossRef] [Google Scholar]
  9. E.P. Fahrenthold and R. Shivarama, Extension and validation of a hybrid particle-finite element method for hypervelocity impact simulation. Hypervelocity Impact Symposium. Int. J. Impact Eng. 29 (2003) 237–246. [CrossRef] [Google Scholar]
  10. Y.T. Feng, K. Han, C.F. Li and D.R.J. Owen, Discrete thermal element modelling of heat conduction in particle systems : Basic formulations. J. Comput. Phys. 227 (2008) 5072–5089. [CrossRef] [Google Scholar]
  11. S. Forest, F. Pradel and K. Sab, Asymptotic analysis of heterogeneous Cosserat media. Int. J. Solids Struct. 38 (2001) 4585–4608. [CrossRef] [Google Scholar]
  12. R.A. Gingold and J.J. Monaghan, smoothed particle hydrodynamics : Theory and application to nonspherical stars. Mon. Not. R. Astron. Soc. 181 (1977) 375–389. [Google Scholar]
  13. O. Gonzalez, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity. Comput. Meth. Appl. Mech. Eng. 190 (2000) 1763–1783. [Google Scholar]
  14. E. Hairer and G. Vilmart, Preprocessed discrete Moser-Veselov algorithm for the full dynamics of a rigid body. J. Phys. A 39 (2006) 13225–13235. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration : Structure-Preserving Algorithms for Ordinary Differential Equations, 2nd edition. Springer Series in Comput. Math. 31 (2006). [Google Scholar]
  16. K. Han, Y.T. Feng and D.R.J. Owen, Coupled lattice Boltzmann and discrete element modelling of fluid-particle interaction problems, in 4th MIT Conference on Computational Fluid and Solid Mechanics. Comput. Struct. 85 (2007) 1080–1088. [CrossRef] [Google Scholar]
  17. P. Hauret and P. Le Tallec, Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Meth. Appl. Mech. Eng. 195 (2006) 4890–4916. [Google Scholar]
  18. D.L. Hicks, J.W. Swegle and S.W. Attaway, Conservative smoothing stabilizes discrete-numerical instabilities in SPH material dynamics computations. Appl. Math. Comput. 85 (1997) 209–226. [CrossRef] [Google Scholar]
  19. W.G. Hoover, Smooth Particle Applied Mechanics : The State of the Art (World Scientific). Adv. Ser. Nonlinear Dyn. 25 (2006). [Google Scholar]
  20. W.G. Hoover, W.T. Arhurst and R.J. Olness, Two-dimensional studies of crystal stability and fluid viscosity. J. Chem. Phys. 60 (1974) 4043–4047. [CrossRef] [Google Scholar]
  21. A. Ibrahimbegovic and A. Delaplace, Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material. Comput. Struct. 81 (2003) 1255–1265. [CrossRef] [Google Scholar]
  22. J.C. Koo and E.P. Fahrenthold, Discrete Hamilton’s equations for arbitrary Lagrangian-Eulerian dynamics of viscous compressible flow. Comput. Meth. Appl. Mech. Eng. 189 (2000) 875–900. [CrossRef] [Google Scholar]
  23. S. Koshizuka and Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123 (1996) 421–434. [Google Scholar]
  24. S. Koshizuka, A. Nobe and Y. Oka, Numerical analysis of breaking waves using the moving particle semi-implicit method. Int. J. Numer. Meth. Fluids 26 (1998) 751–769. [CrossRef] [Google Scholar]
  25. S. Koshizuka, M.S. Song and Y. Oka, A particle method for three-dimensional elastic analysis, in Proc. of 6th World Cong. Computational Mechanics (WCCM VI). Beijing (2004). [Google Scholar]
  26. F. Kun and H. Herrmann, A study of fragmentation processes using a discrete element method. Comput. Meth. Appl. Mech. Eng. 138 (1996) 3–18. [Google Scholar]
  27. H. Lamb, On the propagation of tremors over the surface of an elastic solid. Philos. Trans. R. Soc. Lond. A 203 (1904) 1–42. [CrossRef] [Google Scholar]
  28. T.A. Laursen and X.N. Meng, A new solution procedure for application of energy-conserving algorithms to general constitutive models in nonlinear elastodynamics. Comput. Meth. Appl. Mech. Eng. 190 (2001) 6309–6322. [CrossRef] [Google Scholar]
  29. C.J.K. Lee, H. Noguchi and S. Koshizuka, Fluid-shell structure interaction analysis by coupled particle and finite element method, in 4th MIT Conference on Computational Fluid and Solid Mechanics. Comput. Struct. 85 (2007) 688–697. [CrossRef] [Google Scholar]
  30. B.J. Leimkuhler and R.D. Skeel, Symplectic numerical integrators in constrained Hamiltonian systems. J. Comput. Phys. 112 (1994) 117–125. [CrossRef] [Google Scholar]
  31. A. Lew, J.E. Marsden, M. Ortiz and M. West, Variational time integrators. Int. J. Numer. Meth. Eng. 60 (2004) 153–212. [CrossRef] [Google Scholar]
  32. L.D. Libersky, A.G. Petschek, T.C. Carney, J.R. Hipp and F.A. Allahdadi, High strain Lagrangian hydrodynamics : A three-dimensional SPH code for dynamic material response. J. Comput. Phys. 109 (1993) 76–83. [CrossRef] [Google Scholar]
  33. L.B. Lucy, A numerical approach to the testing of the fission hypothesis. Astron. J. 82 (1977) 1013–1024. [Google Scholar]
  34. C. Mariotti, Lamb’s problem with the lattice model Mka3D. Geophys. J. Int. 171 (2007) 857–864. [CrossRef] [Google Scholar]
  35. J.J. Monaghan, Simulating free surface flows with SPH. J. Comput. Phys. 110 (1994) 399–406. [Google Scholar]
  36. D.O. Potyondy and P.A. Cundall, A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41 (2004) 1329–1364. [CrossRef] [Google Scholar]
  37. A. Ries, D.E. Wolf and T. Unger, Shear zones in granular media : Three-dimensional contact dynamics simulation. Phys. Rev. E 76 (2007) 051301. [CrossRef] [Google Scholar]
  38. J.C. Simo, N. Tarnow and K.K. Wong, Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics. Comput. Meth. Appl. Mech. Eng. 100 (1992) 63–116. [CrossRef] [Google Scholar]
  39. Y. Suzuki and S. Koshizuka, A Hamiltonian particle method for non-linear elastodynamics. Int. J. Numer. Meth. Eng. 74 (2008) 1344–1373. [CrossRef] [Google Scholar]
  40. J.W. Swegle, D.L. Hicks and S.W. Attaway, smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116 (1995) 123–134. [Google Scholar]
  41. K.Y. Sze, X.H. Liu and S.H. Lo, Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40 (2004) 1551–1569. [CrossRef] [Google Scholar]
  42. H. Yserentant, A new class of particle methods. Numer. Math. 76 (1997) 87–109. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you