Free Access
Issue
ESAIM: M2AN
Volume 47, Number 1, January-February 2013
Page(s) 305 - 315
DOI https://doi.org/10.1051/m2an/2012033
Published online 23 November 2012
  1. Y. Avishai, D. Bessis, B.G. Giraud and G. Mantica, Quantum bound states in open geometries. Phys. Rev. B 44 (1991) 8028–8034. [CrossRef] [Google Scholar]
  2. M.Sh. Birman and M.Z. Solomjak, Spectral theory of selfadjoint operators in Hilbert space. Translated from the 1980 Russian original by S. Khrushchëv and V. Peller. Math. Appl. (Soviet Series). D. Reidel Publishing Co., Dordrecht (1987). [Google Scholar]
  3. D. Borisov, R. Bunoiu and G. Cardone, On a waveguide with frequently alternating boundary conditions : homogenized Neumann condition. Ann. Henri Poincaré 11 (2010) 1591–1627. [CrossRef] [Google Scholar]
  4. D. Borisov, R. Bunoiu and G. Cardone, On a waveguide with an infinite number of small windows. C. R. Math. Acad. Sci. Paris, Ser. I 349 (2011) 53–56. [CrossRef] [Google Scholar]
  5. D. Borisov, R. Bunoiu and G. Cardone, Homogenization and asymptotics for a waveguide with an infinite number of closely located small windows. Prob. Math. Anal. 58 (2011) 59–68; J. Math. Sci. 176 (2011) 774-785. [Google Scholar]
  6. D. Borisov, R. Bunoiu and G. Cardone, Waveguide with non-periodically alternating Dirichlet and Robin conditions : homogenization and asymptotics. Z. Angew. Math. Phys. (ZAMP), DOI 10.1007/s00033-012-0264-2. [Google Scholar]
  7. D. Borisov and G. Cardone, Homogenization of the planar waveguide with frequently alternating boundary conditions. J. Phys. A, Math. Theor. 42 (2009) 365205. [CrossRef] [Google Scholar]
  8. D. Borisov and G. Cardone, Planar Waveguide with “Twisted” Boundary Conditions : Discrete Spectrum. J. Math. Phys. 52 (2011) 123513. [CrossRef] [Google Scholar]
  9. D. Borisov and G. Cardone, Planar Waveguide with “Twisted” Boundary Conditions : Small Width. J. Math. Phys. 53 (2012) 023503. [CrossRef] [Google Scholar]
  10. D. Borisov, P. Exner, R. Gadyl’shin, and D. Krejčiřík, Bound states in weakly deformed strips and layers. Ann. Henri Poincaré 2 (2001) 553–572. [CrossRef] [MathSciNet] [Google Scholar]
  11. W. Bulla, F. Gesztesy, W. Renger and B. Simon, Weakly coupled bound states in quantum waveguides. Proc. Amer. Math. Soc. 125 (1997) 1487–1495. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Cardone, V. Minutolo and S.A. Nazarov, Gaps in the essential spectrum of periodic elastic waveguides. Z. Angew. Math. Mech. 89 (2009) 729–741. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Cardone, S.A. Nazarov and C. Perugia, A gap in the continuous spectrum of a cylindrical waveguide with a periodic perturbation of the surface. Math. Nach. 283 (2010) 1222–1244. [CrossRef] [Google Scholar]
  14. G. Cardone, S.A. Nazarov and K. Ruotsalainen, Asymptotics of an eigenvalue in the continuous spectrum of a converging waveguide. Mat. Sb. 203 (2012) 3–32. [CrossRef] [Google Scholar]
  15. G. Cardone, V. Minutolo and S.A. Nazarov, Gaps in the essential spectrum of periodic elastic waveguides. Z. Angew. Math. Mech. 89 (2009) 729–741. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Cardone, S.A. Nazarov and C. Perugia, A gap in the continuous spectrum of a cylindrical waveguide with a periodic perturbation of the surface. Math. Nach. 283 (2010) 1222–1244. [CrossRef] [Google Scholar]
  17. P. Duclos and P. Exner, Curvature-induced bound states in quantum waveguides in two and three dimensions. Rev. Math. Phys. 7 (1995) 73–102. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Exner and S.A. Vugalter, Bound states in a locally deformed waveguide : the critical case. Lett. Math. Phys. 39 (1997) 59–68. [CrossRef] [MathSciNet] [Google Scholar]
  19. R.R. Gadyl’shin, On local perturbations of quantum waveguides. (Russian) Teoret. Mat. Fiz. 145 (2005) 358–371; Engl. transl. : Theoret. Math. Phys. 145 (2005) 1678–1690. [CrossRef] [MathSciNet] [Google Scholar]
  20. V.V. Grushin, On the eigenvalues of a finitely perturbed Laplace operator in infinite cylindrical domains. Mat. Zametki 75 (2004) 360–371; Engl. transl. : Math. Notes 75 (2004) 331–340. [CrossRef] [MathSciNet] [Google Scholar]
  21. D.S. Jones, The eigenvalues of ∇2u + λu = 0 when the boundary conditions are given on semi-infinite domains. Proc. Cambridge Philos. Soc. 49 (1953) 668–684. [CrossRef] [MathSciNet] [Google Scholar]
  22. V.A. Kondratiev, Boundary value problems for elliptic problems in domains with conical or corner points, Trudy Moskov. Matem. Obshch 16 (1967) 209–292. Engl. transl. : Trans. Moscow Math. Soc. 16 (1967) 227–313. [Google Scholar]
  23. V.G. Maz’ya and B.A. Plamenevskii, On coefficients in asymptotics of solutions of elliptic boundary value problems in a domain with conical points, Math. Nachr. 76 (1977) 29–60; Engl. transl. : Amer. Math. Soc. Transl. 123 (1984) 57–89. [CrossRef] [MathSciNet] [Google Scholar]
  24. V.G. Maz’ya and B.A. Plamenevskii, Estimates in Lp and Hölder classes and the Miranda-Agmon maximum principle for solutions of elliptic boundary value problems in domains with singular points on the boundary. Math. Nachr. 81 (1978) 25–82; Engl. transl. : Amer. Math. Soc. Transl. Ser. 123 (1984) 1–56. [CrossRef] [MathSciNet] [Google Scholar]
  25. V.G. Maz’ya, S.A. Nazarov and B.A. Plamenevskij, Boris Asymptotic theory of elliptic boundary value problems in singularly perturbed domains II, Translated from the German by Plamenevskij. Operator Theory : Advances and Applications. Birkhäuser Verlag, Basel 112 (2000). [Google Scholar]
  26. S.A. Nazarov, Two-term asymptotics of solutions of spectral problems with singular perturbations, Mat. sbornik. 178 (1991) 291–320; Engl. transl. : Math. USSR. Sbornik. 69 (1991) 307–340. [Google Scholar]
  27. S.A. Nazarov, Discrete spectrum of cranked, branchy and periodic waveguides, Algebra i analiz 23 (2011) 206–247; Engl. transl. : St. Petersburg Math. J. 23 (2011). [Google Scholar]
  28. S.A. Nazarov and B.A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries. Nauka, Moscow (1991); Engl. transl. : Elliptic problems in domains with piecewise smooth boundaries. Walter de Gruyter, Berlin, New York (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you