Free Access
Issue
ESAIM: M2AN
Volume 47, Number 2, March-April 2013
Page(s) 609 - 633
DOI https://doi.org/10.1051/m2an/2012042
Published online 15 January 2013
  1. D. Aregba-Driollet and R. Natalini, Convergence of relaxation schemes for conservation laws. Appl. Anal. 1-2 (1996) 163–193. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Aregba-Driollet and R. Natalini, Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37 (2000) 1973–2004. [CrossRef] [MathSciNet] [Google Scholar]
  3. S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy. Commun. Pure Appl. Math. 60 (2007) 1559–1622. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.A. Carrillo, B. Yan, An Asymptotic Preserving Scheme for the Diffusive Limit of Kinetic systems for Chemotaxis. Preprint. [Google Scholar]
  5. A. Chalabi, Convergence of relaxation schemes for hyperbolic conservation laws with stiff source terms. Math. Comput. 68 (1999) 955–970. [CrossRef] [Google Scholar]
  6. G.Q. Chen, T.P. Liu and C.D. Levermore, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787–830. [CrossRef] [MathSciNet] [Google Scholar]
  7. P. Degond, J.-G. Liu and M-H Vignal, Analysis of an asymptotic preserving scheme for the Euler-Poisson system in the quasineutral limit. SIAM J. Numer. Anal. 46 (2008) 1298–1322. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Deng, Asymptotic Preserving Schemes for Semiconductor Boltzmann Equation in the Diffusive Regime. CiCp (2012). [Google Scholar]
  9. G. Dimarco and L. Pareschi, Exponential Runge-Kutta methods for stiff kinetic equations. To appear. SIAM J. Numer. Anal. 49 (2011) 2057–2077. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Filbet and S. Jin, A class of asymptotic preserving schemes for kinetic equations and related problems with stiff sources. J.Comput. Phys. 229 (2010). [Google Scholar]
  11. F. Filbet and S. Jin, An asymptotic preserving scheme for the ES-BGK model for he Boltzmann equation. J. Sci. Comput. 46 (2011). [Google Scholar]
  12. E. Gabetta, L. Pareschi and G. Toscani, Relaxation schemes for nonlinear kinetic equations. SIAM J. Numer. Anal. 34 (1997) 2168–2194 [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Golse, S. Jin and C.D. Levermore, The Convergence of Numerical Transfer Schemes in Diffusive Regimes I : The Discrete-Ordinate Method. SIAM J. Numer. Anal. 36 (1999) 1333–1369. [CrossRef] [MathSciNet] [Google Scholar]
  14. L. Gosse and G. Toscani, Space localization and well-balanced schemes for discrete kinetic models in diffusive regimes. SIAM J. Numer. Anal. 41 (2003) 641–658 [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Jin, L. Pareschi and G. Toscani, Diffusive Relaxation Schemes for Discrete-Velocity Kinetic Equations. SIAM J. Numer. Anal. 35 (1998) 2405–2439. [CrossRef] [MathSciNet] [Google Scholar]
  16. S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441–454. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Kurganov and E. Tadmor, Stiff systems of hyperbolic conservation laws : convergence and error estimates. SIAM J. Math. Anal. 28 (1997) 1446–1456. [CrossRef] [MathSciNet] [Google Scholar]
  18. T.P. Liu, Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 1 (1987) 153–175. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Naldi and L. Pareschi, Numerical schemes for hyperbolic systems of conservation laws with stiff diffusive relaxation. SIAM J. Numer. Anal. 37 (2000) 1246–1270. [CrossRef] [MathSciNet] [Google Scholar]
  20. R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws. Commun. Pure Appl. Math. 8 (1996) 795–823. [CrossRef] [Google Scholar]
  21. E. Tadmor and T. Tang, Pointwise error estimates for scalar conservation laws with piecewise smooth solutions. SIAM J. Numer. Anal. 36 (1999) 1739–1758. [CrossRef] [MathSciNet] [Google Scholar]
  22. E. Tadmor and T. Tang, Pointwise error estimates for relaxation approximations to conservation laws. SIAM J. Math. Anal. 32 (2000) 870–886. [CrossRef] [MathSciNet] [Google Scholar]
  23. T. Tang and J. Wang, Convergence of MUSCL relaxing schemes to the relaxed schemes of conservation laws with stiff source terms. J. Sci. Comput. 15 (2000) 173–195. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you