Free Access
Issue
ESAIM: M2AN
Volume 47, Number 2, March-April 2013
Page(s) 471 - 506
DOI https://doi.org/10.1051/m2an/2012043
Published online 11 January 2013
  1. D.N. Arnold, F. Brezzi and J. Douglas, PEERS : A new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1 (1984) 347–367. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Babuška and A.K. Aziz, Survey lectures on the mathematical foundations of the finite element method. in The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, edited by A.K. Aziz. Academic Press, New York (1972). [Google Scholar]
  3. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag New York, Inc. (1994). [Google Scholar]
  4. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag (1991). [Google Scholar]
  5. J. Bielak and R.C. MacCamy, Symmetric finite element and boundary integral coupling methods for fluid-solid interaction. Quarterly Appl. Math. 49 (1991) 107–119. [Google Scholar]
  6. D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. 2nd edition. Springer-Verlag, Berlin (1998). [Google Scholar]
  7. G.N. Gatica, A. Márquez and S. Meddahi, Analysis of the coupling of primal and dual-mixed finite element methods for a two-dimensional fluid-solid interaction problem. SIAM J. Numer. Anal. 45 (2007) 2072–2097. [CrossRef] [MathSciNet] [Google Scholar]
  8. G.N. Gatica, A. Márquez and S. Meddahi, A new dual-mixed finite element method for the plane linear elasticity problem with pure traction boundary conditions. Comput. Methods Appl. Mech. Engrg. 197 (2008) 1115–1130. [CrossRef] [MathSciNet] [Google Scholar]
  9. G.N. Gatica, A. Márquez and S. Meddahi, Analysis of the coupling of BEM, FEM and mixed-FEM for a two-dimensional fluid-solid interaction problem. Appl. Numer. Math. 59 (2009) 2735–2750. [CrossRef] [Google Scholar]
  10. G.N. Gatica, A. Márquez and S. Meddahi, Analysis of the coupling of Lagrange and Arnold-Falk-Winther finite elements for a fluid-solid interaction problem in 3D. SIAM J. Numer. Anal. 50 (2012) 1648–1674. [CrossRef] [MathSciNet] [Google Scholar]
  11. G.N. Gatica, A. Márquez and S. Meddahi, Analysis of an augmented fully-mixed finite element method for a three-dimensional fluid-solid interaction problem. Preprint 2011-23, Centro de Investigación en Ingeniería Matemática (CI2MA), Universidad de Concepción (2011). [Google Scholar]
  12. G.N. Gatica, R. Oyarzúa and F.J. Sayas, Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem. Math. Comput. 80 276 (2011) 1911–1948. [CrossRef] [Google Scholar]
  13. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms. Springer-Verlag. Springer Ser. Comput. Math. 5 (1986). [Google Scholar]
  14. P. Grisvard, Elliptic Problems in Non-Smooth Domains. Pitman. Monogr. Studies Math. 24 (1985). [Google Scholar]
  15. P. Grisvard, Problèmes aux limites dans les polygones. Mode d’emploi. EDF. Bulletin de la Direction des Etudes et Recherches (Serie C) 1 (1986) 21–59. [Google Scholar]
  16. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11 (2002) 237–339. [CrossRef] [MathSciNet] [Google Scholar]
  17. G.C. Hsiao, On the boundary-field equation methods for fluid-structure interactions, edited by L. Jentsch and F. Tröltzsch, Teubner-Text zur Mathematik, Band, B.G. Teubner Veriagsgesellschaft, Stuttgart, in Probl. Methods Math. Phys. 34 (1994) 79–88. [Google Scholar]
  18. G.C. Hsiao, R.E. Kleinman and G.F. Roach, Weak solutions of fluid-solid interaction problems. Math. Nachrichten 218 (2000) 139–163. [CrossRef] [MathSciNet] [Google Scholar]
  19. G.C. Hsiao, R.E. Kleinman and L.S. Schuetz, On variational formulations of boundary value problems for fluid-solid interactions, edited by M.F. McCarthy and M.A. Hayes. Elsevier Science Publishers B.V. (North-Holland), in Elastic Wave Propagation (1989) 321–326. [Google Scholar]
  20. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering. Springer-Verlag, New York (1998). [Google Scholar]
  21. R. Kress, Linear Integral Equ. Springer-Verlag, Berlin (1989). [Google Scholar]
  22. M. Lonsing and R. Verfürth, On the stability of BDMS and PEERS elements. Numer. Math. 99 (2004) 131–140. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Márquez, S. Meddahi and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems. J. Comput. Phys. 199 (2004) 205–220. [CrossRef] [MathSciNet] [Google Scholar]
  24. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). [Google Scholar]
  25. S. Meddahi and F.-J. Sayas, Analysis of a new BEM-FEM coupling for two dimensional fluid-solid interaction. Numer. Methods Partial Differ. Equ. 21 (2005) 1017–1042. [CrossRef] [Google Scholar]
  26. J.E. Roberts and J.M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.L. Lions, vol. II, Finite Element Methods (Part 1), North-Holland, Amsterdam (1991). [Google Scholar]
  27. R. Stenberg, A family of mixed finite elements for the elasticity problem. Numer. Math. 53 (1988) 513–538. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you