Volume 47, Number 4, July-August 2013
Direct and inverse modeling of the cardiovascular and respiratory systems
Page(s) 935 - 960
Published online 13 June 2013
  1. E. Agostoni and R.E. Hyatt, Static behavior of the respiratory system, in Handbook of physiology, edited by S.R. Geiger, 2nd edition. American Physiological Society, Bethesda (1986) 113–130. [Google Scholar]
  2. D.V. Bates, C.J. Varvis, R.E. Donevan and R.V. Christie, Variations in the pulmonary capillary blood volume and membrane diffusion component in health and disease. J. Clin. Invest. 39 (1960) 1401–1412. [CrossRef] [PubMed] [Google Scholar]
  3. R. Begin, A.D. Renzetti Jr., A.H. Bigler and S. Watanabe, Flow and age dependence of airway closure and dynamic compliance. J. Appl. Physiol. 38 (1975) 199–207. [PubMed] [Google Scholar]
  4. A. Ben-Tal, Simplified models for gas exchange in the human lungs. J. Theor. Biol. 238 (2006) 474–495. [CrossRef] [PubMed] [Google Scholar]
  5. C. Brighenti, G. Gnudi and G. Avanzolini, A simulation model of the oxygen alveolo-capillary exchange in normal and pathological conditions. Physiol. Meas. 24 (2003) 261–275. [CrossRef] [PubMed] [Google Scholar]
  6. L. Brochard, J. Mancebo, M. Wysocki, F. Lofaso, G. Conti, A. Rauss, G. Simonneau, S. Benito, A. Gasparetto, F. Lemaire, D. Isabey and A. Harf, Noninvasive ventilation for acute exacerbations of chronic obstructive pulmonary disease. N. Engl. J. Med. 333 (1995) 817–822. [Google Scholar]
  7. J.E. Cotes, D.J. Chinn and M.R. Miller, Lung function: Physiology, Measurement and Application in Medicine, 6th edition. Blackwell Publishing Ltd. (2006). [Google Scholar]
  8. J.E. Cotes, D.J. Chinn, Ph. Quanjer, J. Roca and J.C. Yernault, Standardization of the measurement of transfer factor (diffusing capacity). Eur. Respir. J. suppl 16 (1993) 41–52. [PubMed] [Google Scholar]
  9. Crandall, E.D. and R.W. Flumerfelt, Effect of time-varying blood flow on oxygen uptake in the pulmonary capillaries. Appl. Physiol. 23 (1967) 944–953. [Google Scholar]
  10. The lung: Scientific Foundations, edited by R.G. Crystal, J.B. West, E.R. Weibel and P.J. Barnes, 2nd edition. Lippincott-Raven Press, Philadelphia 2 (1997). [Google Scholar]
  11. W.A. Eaton, E.R. Henry, J. Hofrichter and A. Mozzarelli, Is cooperative oxygen binding by hemoglobin really understood?. Nat. Struct. Biol. 6 (1999) 351–358. [CrossRef] [PubMed] [Google Scholar]
  12. M. Felici, M. Filoche and B. Sapoval, Diffusional screening in the human pulmonary acinus. J. Appl. Physiol. 94 (2003) 2010–2016. [PubMed] [Google Scholar]
  13. M. Felici, M. Filoche and B. Sapoval, Renormalized random walk study of oxygen absorption in the human lung. Phys. Rev. Lett. 92 (2004) 068101. [CrossRef] [PubMed] [Google Scholar]
  14. M. Felici, M. Filoche, C. Straus, T. Similowski and B. Sapoval, Diffusional screening in real 3D human acini – a theoretical study. Respir. Physiol. Neurobiol. 145 (2005) 279–293. [CrossRef] [PubMed] [Google Scholar]
  15. M. Filoche and M. Florens, The stationary flow in a heterogeneous compliant vessel network. J. Phys. Conf. Ser. 319 (2011) 012008. [CrossRef] [Google Scholar]
  16. A. Foucquier, Dynamique du transport et du transfert de l’oxygène au sein de l’acinus pulmonaire humain. Ph.D. thesis, École Polytechnique (2010). [Google Scholar]
  17. P. Gehr, M. Bachofen and E.R. Weibel, The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol. 32 (1978) 121–140. [CrossRef] [PubMed] [Google Scholar]
  18. A.C. Guyton and J.E. Hall, Textbook of medical physiology, 9th edition. W.B. Saunders Co, Philadelphia (1996). [Google Scholar]
  19. M.P. Hlastala and A.J. Berger, Physiology of Respiration, 2nd edition. Oxford University Press, Oxford (2001). [Google Scholar]
  20. C. Hou, S. Gheorghiu, M.-O. Coppens, V.H. Huxley and P. Pfeifer, Gas diffusion through the fractal landscape of the lung: How deep does oxygen enter the alveolar system? in Fractals in Biology and Medicine, edited by G.A. Losa, D. Merlini, T.F. Nonnenmacher, E.R. Weibel. Basel: Birkhäuser IV (2005) 17–30. [Google Scholar]
  21. J.M.B. Hughes, Pulmonary gas exchange. in Lung Function Testing, edited by R. Gosselink and H. Stam. European Respiratory Monograph 10 (2005) 106–126. [Google Scholar]
  22. J. Keener and J. Sneyd, Mathematical Physiology. Interdisciplinary Applied Mathematics. Springer (1998). [Google Scholar]
  23. G.R. Kelman, Digital computer subroutine for the conversion of oxygen tension into saturation. J. Appl. Physiol. 21 (1966) 1375–1376. [PubMed] [Google Scholar]
  24. J.D. Kibble and C. Halsey, Medical Physiology, The Big Picture. McGraw Hill (2009). [Google Scholar]
  25. C.H. Liu, S.C. Niranjan, J.W. Clark, K.Y. San, J.B. Zwischenberger and A. Bidani, Airway mechanics, gas exchange, and blood flow in a nonlinear model of the normal human lung. J. Appl Physiol. 84 (1998) 1447–1469. [PubMed] [Google Scholar]
  26. S. Martin, T. Similowski, C. Straus and B. Maury, Impact of respiratory mechanics model parameter on gas exchange efficiency. ESAIM Proc. 23 (2008) 30–47. [CrossRef] [EDP Sciences] [Google Scholar]
  27. B. Mauroy and P. Bokov, Influence of variability on the optimal shape of a dichotomous airway tree branching asymmetrically. Phys. Biol. 7 (2010) 016007. [CrossRef] [Google Scholar]
  28. B. Mauroy, M. Filoche, J.S. Andrade Jr. and B. Sapoval, Interplay between flow distribution and geometry in an airway tree. Phys. Rev. Lett. 90 (2003) 14. [Google Scholar]
  29. B. Mauroy, M. Filoche, E.R. Weibel, and B. Sapoval, An optimal bronchial tree may be dangerous. Nature 427 (2004) 633–636. [Google Scholar]
  30. B. Mauroy and N. Meunier, Optimal Poiseuille flow in a finite elastic dyadic tree. ESAIM: M2AN 42 (2008) 507–534. [CrossRef] [EDP Sciences] [Google Scholar]
  31. M. Paiva and L.A. Engel, Model analysis of gas distribution within human lung acinus. J. Appl. Physiol. 56 (1984) 418–425. [PubMed] [Google Scholar]
  32. J. Piiper and P. Scheid, Respiration: alveolar gas exchange. Annu. Rev. Physiol. 33 (1971) 131–154. [CrossRef] [PubMed] [Google Scholar]
  33. F.J. Roughton and R.E. Forster, Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries. J. Appl. Physiol. 11 (1957) 290–302. [PubMed] [Google Scholar]
  34. B. Sapoval and M. Filoche, Role of diffusion screening in pulmonary diseases. Adv. Exp. Med. Biol. 605 (2008) 173–178. [CrossRef] [PubMed] [Google Scholar]
  35. B. Sapoval, M. Filoche and E.R. Weibel, Smaller is better − but not too small: a physical scale for the design of the mammalian pulmonary acinus. Proc. Natl. Acad. Sci. USA 99 (2002) 10411. [Google Scholar]
  36. T. Similowski and J.H.T. Bates, Two-compartment modelling of respiratory system mechanics at low frequencies: gas redistribution or tissue rheology? Eur. Respir. J. 4 (1991) 353–358. [PubMed] [Google Scholar]
  37. T.T. Soong, P. Nicolaides, C.P. Yu and S.C. Soong, A statistical description of the human tracheobronchial tree geometry. Respir. Physiol. 37 (1979) 161–72. [CrossRef] [PubMed] [Google Scholar]
  38. A.J. Swan and M.H. Tawhai, Evidence for minimal oxygen heterogeneity in the healthy human pulmonary acinus. J. Appl. Physiol. 110 (2011) 528–537. [CrossRef] [PubMed] [Google Scholar]
  39. J. Sznitman, Convective gas transport in the pulmonary acinus: comparing roles of convective and diffusive lengths. J. Biomech. 42 (2009) 789–792. [CrossRef] [PubMed] [Google Scholar]
  40. C. Tantucci, A. Duguet, P. Giampiccolo, T. Similowski, M. Zelter and J.-P. Derenne, The best peak expiratory flow is flow-limited and effort-independent in normal subjects. Am. J. Respir. Crit. Care Med. 165 (2002) 1304–1308. [CrossRef] [PubMed] [Google Scholar]
  41. M.H. Tawhai and P.J. Hunter, Characterising respiratory airway gas mixing using a lumped parameter model of the pulmonary acinus. Respir. Physiol. 127 (2001) 241–248. [CrossRef] [PubMed] [Google Scholar]
  42. E.R. Weibel, Morphometry of the human lung, Springer Verlag and Academic Press, Berlin, New York (1963). [Google Scholar]
  43. E.R. Weibel, The pathway for oxygen, Harvard University Press (1984). [Google Scholar]
  44. E.R. Weibel, Design and morphometry of the pulmonary gas exchanger, in The lung: scientific foundations, 2nd edition, edited by R.G. Crystal, J.B. West, E.R. Weibel, P.J. Barnes. Lippincott-Raven Press, Philadelphia 1 (1997) 1147–1157. [Google Scholar]
  45. E.R. Weibel, B. Sapoval and M. Filoche, Design of peripheral airways for efficient gas exchange. Resp. Phys. Neur. 148 (2005) 3–21. [CrossRef] [Google Scholar]
  46. E.R. Weibel, How does lung structure affect gas exchange? Chest 83 (1983) 657–665. [CrossRef] [PubMed] [Google Scholar]
  47. J.B. West, Respiratory physiology: the essentials, Baltimore: Williams and Wilkins (1974). [Google Scholar]
  48. J.P. Whiteley, D.J. Gavaghan and C.E. Hahn, Some factors affecting oxygen uptake by red blood cells in the pulmonary capillaries. Math. Biosci. 169 (2001) 153–172. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you