Free Access
Volume 47, Number 6, November-December 2013
Page(s) 1553 - 1582
Published online 26 August 2013
  1. A. Anantharaman and E. Cancès, Existence of minimizers for Kohn − Sham models in quantum chemistry. Ann. Institut Henri Poincaré, Non Linear Anal. 26 (2009) 2425. [Google Scholar]
  2. S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations. Princeton University press, Princeton (1982). [Google Scholar]
  3. H.W. Alt, Lineare Funktionalanalysis, Auflage. Springer, Berlin 5 (2006). [Google Scholar]
  4. J. Arponen, Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems. Ann. Phys. 151 (1983) 311. [CrossRef] [Google Scholar]
  5. A.A. Auer and G. Baumgärtner, Automatic Code Generation for Many-Body Electronic Structure Methods: The tensor contraction engine. Molecul. Phys. 104 (2006) 211. [CrossRef] [Google Scholar]
  6. I. Babuska and J.E. Osborn, Finite Element-Galerkin Approximation of the Eigenvalues and Eigenvectors of Selfadjoint Problems. Math. Comput. 52 (1989) 275–297. [Google Scholar]
  7. V. Bach, E.H. Lieb, M. Loss and J.P. Solovej, There are no unfilled shells in unrestricted Hartree–Fock theory. Phys. Rev. Lett. 72 (1994) 2981. [CrossRef] [PubMed] [Google Scholar]
  8. N.B. Balabanova and K.A. Peterson, Basis set limit electronic excitation energies, ionization potentials, and electron affinities for the 3d transition metal atoms: Coupled cluster and multireference methods. J. Chem. Phys. 125 (2006) 074110. [CrossRef] [PubMed] [Google Scholar]
  9. W. Bangerth and R. Rannacher, Adaptive finite element methods for differential equations. Birkhäuser (2003). [Google Scholar]
  10. R.J. Bartlett, Many-body perturbation theory and coupled cluster theory for electronic correlation in molecules. Ann. Rev. Phys. Chem. 32 (1981) 359. [NASA ADS] [CrossRef] [Google Scholar]
  11. R.J. Bartlett and M. Musial, Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 79 (2007) 291. [NASA ADS] [CrossRef] [Google Scholar]
  12. R.J. Bartlett and G.D. Purvis, Many-body perturbation theory, coupled-pair many-electron theory, and the importance of quadruple excitations for the correlation problem. Int. J. Quantum Chem. 14 (1978) 561. [CrossRef] [Google Scholar]
  13. R. Becker and R. Rannacher, An optimal control approach to error estimation and mesh adaptation in finite element methods. Acta Numerica 2000. Edited by A. Iserles. Cambridge University Press (2001) 1. [Google Scholar]
  14. U. Benedikt, M. Espig, W. Hackbusch and A.A. Auer, A new Approach for Tensor Decomposition in Electronic Structure Theory (submitted). [Google Scholar]
  15. D.E. Bernholdt and R.J. Bartlett, A Critical Assessment of Multireference-Fock Space CCSD and Perturbative Third-Order Triples Approximations for Photoelectron Spectra and Quasidegenerate Potential Energy Surfaces. Adv. Quantum Chemist. 34 (1999) 261. [Google Scholar]
  16. R.F. Bishop, An overview of coupled cluster theory and its applications in physics. Theor. Chim. Acta 80 (1991) 95. [CrossRef] [Google Scholar]
  17. M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln. Ann. Phys. 389 (1927) 457. [Google Scholar]
  18. E. Cancès, R. Chakir and Y. Maday, Numerical Analysis of Nonlinear Eigenvalue Problems J. Scientific Comput. 45 (2010) 90. DOI: 10.1007/s10915-010-9358-1. [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Cársky, J. Paldus and J. Pittner, Recent Progress in Coupled Cluster Methods, Theory and Applications. In vol. 44 of series: Challenges Adv. Comput. Chem. Phys. Springer (2010). [Google Scholar]
  20. T. Chan, W.J. Cook, E. Hairer, J. Hastad, A. Iserles, H.P. Langtangen, C. Le Bris, P.L. Lions, C. Lubich, A.J. Majda, J. McLaughlin, R.M. Nieminen, J.T. Oden, P. Souganidis and A. Tveito, Encyclopedia Appl. Comput. Math. Springer. To appear (2013). [Google Scholar]
  21. O. Christiansen, Coupled cluster theory with emphasis on selected new developments. Theor. Chem. Acc. 116 (2006) 106. [CrossRef] [Google Scholar]
  22. P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis, Volume II: Finite Element Methods (Part I). Elsevier (1991). [Google Scholar]
  23. P.G. Ciarlet and C. Lebris, Handbook of Numerical Analysis, Volume X: Special Volume. Computational Chemistry. Elsevier (2003). [Google Scholar]
  24. J. Čížek, Origins of coupled cluster technique for atoms and molecules. Theor. Chim. Acta 80 (1991) 91. [CrossRef] [Google Scholar]
  25. F. Coerster, Bound states of a many-particle system. Nucl. Phys. 7 (1958) 421. [CrossRef] [Google Scholar]
  26. F. Coerster and H. Kümmel, Short range correlations in nuclear wave functions. Nucl. Phys. 17 (1960) 477. [CrossRef] [Google Scholar]
  27. Computational Chemistry Comparison and Benchmark Data Base, National Institute of Standards and Technology. Available on [Google Scholar]
  28. T.D. Crawford and H.F. Schaeffer III, An introduction to coupled cluster theory for computational chemists. Rev. Comput. Chem. 14 (2000) 33. [CrossRef] [Google Scholar]
  29. Dalgaard and H.J. Monkhorst, Some aspects of the time-dependent coupled-cluster approach to dynamic response functions. Phys. Rev. A 28 (1983) 1217. [CrossRef] [Google Scholar]
  30. J.E. Dennis Jr. and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996). [Google Scholar]
  31. P.A.M. Dirac, Quantum Mechanics of Many-Electron Systems. Proc. of Royal Soc. London, Series A CXXIII (1929) 714. [Google Scholar]
  32. R.M. Dreizler and E.K.U. Gross, Density functional theory. Springer (1990). [Google Scholar]
  33. E. Emmrich, Gewöhnliche und Operator-Differentialgleichungen, Vieweg (2004). [Google Scholar]
  34. H.J. Flad, R. Schneider and T. Rohwedder, Adaptive methods in Quantum Chemistry. Zeitsch. f. Phys. Chem. 224 (2010) 651–670. [CrossRef] [Google Scholar]
  35. V. Fock, Konfigurationsraum und zweite Quantelung. Z. Phys. 75 (1932) 622. [Google Scholar]
  36. G. Friesecke and B.D. Goddard, Explicit large nuclear charge limit of electronic ground states for Li, Be, B, C, N, O, F, Ne and basic aspects of the periodic table. SIAM J. Math. Anal. 41 (2009) 631–664. [CrossRef] [MathSciNet] [Google Scholar]
  37. H. Gajewski, K. Gröger and K. Zacharias, Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie Verlag (1974). [Google Scholar]
  38. S.R. Gwaltney and M. Head-Gordon, A second-order correction to singles and doubles coupled-cluster methods based on a perturbative expansion of a similarity-transformed Hamiltonian 323 (2000) 2128. [Google Scholar]
  39. S.R. Gwaltney, C.D. Sherrill, M. Head-Gordon and A.I. Krylov, Second-order perturbation corrections to singles and doubles coupled-cluster methods: General theory and application to the valence optimized doubles model. J. Chem. Phys. 113 (2000) 3548–3560. [CrossRef] [Google Scholar]
  40. W. Hackbusch, Elliptic Differential Equations, vol. 18. of SSCM. Springer (1992), [Google Scholar]
  41. C. Hampel and H.-J. Werner, Local treatment of electron correlation in coupled cluster theory. J. Chem. Phys. 104 (1996) 6286. [CrossRef] [Google Scholar]
  42. T. Helgaker and P. Jørgensen, Configuration-interaction energy derivatives in a fully variational formulation. Theor. Chim. Acta 75 (1989) 111127. [CrossRef] [Google Scholar]
  43. T. Helgaker, P. Jørgensen and J. Olsen, Molecular Electronic-Structure Theory. John Wiley & Sons (2000). [Google Scholar]
  44. T. Helgaker, W. Klopper and D.P. Tew, Quantitative quantum chemistry. Mol. Phys. 106 (2008) 2107. [CrossRef] [Google Scholar]
  45. S. Hirata, Tensor contraction engine: Abstraction and automated parallel implementation of Configuration-Interaction, Coupled-Cluster, and Many-Body perturbation theories. J. Phys. Chem. A 46 (2003) 9887. [CrossRef] [Google Scholar]
  46. W. Hunziker and I.M. Sigal, The quantum N-body problem. J. Math. Phys. 41 (2000) 6. [CrossRef] [Google Scholar]
  47. W. Klopper, F.R. Manby, S. Ten-no and E.F. Vallev, R12 methods in explicitly correlated molecular structure theory. Int. Rev. Phys. Chem. 25 (2006) 427. [CrossRef] [Google Scholar]
  48. P. Knowles, M. Schütz and H.-J. Werner, Ab Initio Methods for Electron Correlation in Molecules, Modern Methods and Algorithms of Quantum Chemistry, vol. 3 of Proceedings, Second Edition, edited by J. Grotendorst. John von Neumann Institute for Computing, Jülich, NIC Series, ISBN 3-00-005834-6 (2000) 97–179. [Google Scholar]
  49. S.A. Kucharsky and R.J. Bartlett, Fifth-order many-body perturbation theory and its relationship to various coupled-cluster approaches. Adv. Quantum Chem. 18 (1986) 281. [CrossRef] [Google Scholar]
  50. W. Kutzelnigg, Error analysis and improvement of coupled cluster theory, Theoretica Chimica Acta 80 (1991) 349. [Google Scholar]
  51. H. Kümmel, Compound pair states in imperfect Fermi gases. Nucl. Phys. 22 (1961) 177. [CrossRef] [Google Scholar]
  52. H. Kümmel, K.H. Lührmann and J.G. Zabolitzky, Many-fermion theory in expS- (or coupled cluster) form. Phys. Reports 36 (1978) 1. [Google Scholar]
  53. S. Kvaal, Ab initio quantum dynamics using coupled-cluster, to appear in J. Chem. Phys. (2012). [Google Scholar]
  54. T.J. Lee, Comparison of the T1 and D1 diagnostics for electronic structure theory: a new definition for the open-shell D1 diagnostic. Chem. Phys. Lett. 372 (2003) 362–367. [CrossRef] [Google Scholar]
  55. T.J. Lee and G.E. Scuseria, Achieving chemical accuracy with Coupled Cluster methods, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, edited by S.R. Langhof. Kluwer Academic Publishers, Dordrecht (1995) 47. [Google Scholar]
  56. T.J. Lee and P.R. Taylor, A diagnostic for determining the quality of single-reference electron correlation methods. Int. J. Quantum Chem. Symp. 23 (1989) 199–207. [Google Scholar]
  57. X. Li and J. Paldus, Dissociation of N2 triple bond: a reduced multireference CCSD study. Chem. Phys. Lett. 286 12 (1998) 145–154. [Google Scholar]
  58. E.H. Lieb and B. Simon, The Hartree − Fock Theory for Coulomb Systems. Commun. Math. Phys. 53 (1977) 185. [CrossRef] [MathSciNet] [Google Scholar]
  59. E.H. Lieb, Bound on the maximum negative ionization of atoms and molecules. Phys. Rev. A 29 (1984) 3018. [CrossRef] [Google Scholar]
  60. I. Lindgren and J. Morrison, Atomic Many-body Theory. Springer (1986). [Google Scholar]
  61. P.L. Lions, Solution of the Hartree Fock equation for Coulomb Systems. Commun. Math. Phys. 109 (1987) 33. [CrossRef] [MathSciNet] [Google Scholar]
  62. C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced methods and Numerical Analysis. Zürich Lect. Adv. Math. EMS (2008). [Google Scholar]
  63. D.I. Lyakh, V.V. Ivanov and L. Adamowicz, State-specific multireference complete-active-space coupled-cluster approach versus other quantum chemical methods: dissociation of the N2 molecule. Mol. Phys. 105 (2007) 1335–1357. [CrossRef] [Google Scholar]
  64. D.I. Lyakh and R.J. Bartlett, An adaptive coupled-cluster theory: @CC approach. J. Chem. Phys. 133 (2010) 244112. [CrossRef] [PubMed] [Google Scholar]
  65. F. Neese, A. Hansen and D.G. Liakos, Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis. J. Chem. Phys. 131 (2009) 064103. [CrossRef] [PubMed] [Google Scholar]
  66. U.S. Mahapatra, B. Datta and D. Mukherjee, A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications. J. Chem. Phys. 110 (1999) 6171–6188. [CrossRef] [Google Scholar]
  67. M. Nooijen, K.R. Shamasundar and D. Mukherjee, Reflections on size-extensivity, size-consistency and generalized extensivity in many-body theory. Molecular Phys. 103 (2005) 2277. [CrossRef] [Google Scholar]
  68. J. Paldus, Coupled Cluster Theory, in Methods Comput. Molec. Phys., edited by S. Wilson and G.F.H. Diercksen. Plenum. New York (1992) 99. [Google Scholar]
  69. J. Paldus, M. Takahashi and B.W.H. Cho, Degeneracy and coupled-cluster Approaches 26 (1984) 237–244. [Google Scholar]
  70. R.G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules. Oxford University Press (1994). [Google Scholar]
  71. A. Persson, Bounds for the discrete part of the spectrum of a semibounded Schrödinger operator. Math. Scand. 8 (1960) 143. [MathSciNet] [Google Scholar]
  72. P. Piecuch, N. Oliphant and L. Adamowicz, A state-selective multireference coupled-cluster theory employing the single-reference formalism. J. Chem. Phys. 99 (1993) 1875. [CrossRef] [Google Scholar]
  73. P. Piecuch, K. Kowalski, P.-D. Fan and I.S.O. Pimienta, New alternatives for electronic structure calculations: Renormalized, extended, and generalized coupled-cluster theories, in vol. 12 of Progr. Theoret. Chemist. Phys., edited by J. Maruani, R. Lefebvre, E. Brändas. Kluwer, Dordrecht (2003) 119–206. [Google Scholar]
  74. J. Pousin and J. Rapaz, Consistenct, stability, a priori and a posteriori estimates for Petrov-Galerkin methods applied to nonlinear problems. Num. Math. 69 (1994) 213–231. [Google Scholar]
  75. K. Raghavachari, G.W. Trucks, J.A. Pople and M. Head–Gordon, A fifth-order perturbation comparison of electronic correlation theories. Chem. Phys. Lett. 157 (1989) 479. [NASA ADS] [CrossRef] [Google Scholar]
  76. M. Reiher, A Theoretical Challenge: Transition-Metal Compounds, Chimia 63 (2009) 140–145. [CrossRef] [Google Scholar]
  77. M. Reed and B. Simon, Methods of Modern Mathematical Physics IV - Analysis of operators. Academic Press (1978). [Google Scholar]
  78. T. Rohwedder, An analysis for some methods and algorithms of Quantum Chemistry, Ph.D. thesis, TU Berlin, available at (2010). [Google Scholar]
  79. T. Rohwedder, The continuous Coupled Cluster formulation for the electronic Schrödinger equation, submitted to M2AN. [Google Scholar]
  80. W. Rudin, Functional Analysis. Tat McGraw & Hill Publishing Company, New Delhi (1979). [Google Scholar]
  81. Y. Saad, J.R. Chelikowsky and S.M. Shontz, Numerical Methods for Electronic Structure Calculations of Materials. SIAM Rev. 52 (2010) 1. [CrossRef] [MathSciNet] [Google Scholar]
  82. R. Schneider, Analysis of the projected Coupled Cluster method in electronic structure calculation. Num. Math. 113 (2009) 433. [CrossRef] [MathSciNet] [Google Scholar]
  83. M. Schütz and H.-J. Werner, Low-order scaling local correlation methods. IV. Linear scaling coupled cluster (LCCSD). J. Chem. Phys. 114 (2000) 661. [CrossRef] [Google Scholar]
  84. B. Simon, Schrödinger operators in the 20th century. J. Math. Phys. 41 (2000) 3523. [CrossRef] [Google Scholar]
  85. A. Szabo and N.S. Ostlund, Modern Quantum Chemistry. Dover Publications Inc. (1992). [Google Scholar]
  86. D.J. Thouless, Stability conditions and nuclear rotations in the Hartree − Fock theory. Nuclear Phys. 21 (1960) 225. [Google Scholar]
  87. J. Wloka, Partial differential equations. Cambridge University Press, reprint (1992). [Google Scholar]
  88. H. Yserentant, Regularity and Approximability of Electronic Wave Functions, in vol. 2000 of Lect. Notes Math. Ser. Springer-Verlag (2010). [Google Scholar]
  89. E. Zeidler, Nonlinear Functional Analysis and Its Applications, Part II B: Nonlinear Monotone Operators. Springer (1990). [Google Scholar]
  90. G.M. Zhislin, Discussion of the spectrum of Schrödinger operator for systems of many particles. Trudy Mosov. Mat. Obshch. 9 (1960) 81–128. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you