Free Access
Volume 47, Number 6, November-December 2013
Page(s) 1733 - 1763
Published online 07 October 2013
  1. Gascoigne: The finite element toolkit. [Google Scholar]
  2. Rodobo: A c++ library for optimization with stationary and nonstationary pdes. [Google Scholar]
  3. Y.A. Alkhutov and V.A. Kondratev, Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain. Differentsial′nye Uravneniya 28 (1992) 806–818, 917. [Google Scholar]
  4. A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, vol. 34, Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1993). [Google Scholar]
  5. D. Braess, Finite Elemente, Springer-Verlag (2007). [Google Scholar]
  6. E. Casas and F. Tröltzsch, Error estimates for the finite-element approximation of a semilinear elliptic control problem. Control Cybernet. 31 (2002) 695–712. [MathSciNet] [Google Scholar]
  7. E. Casas and F. Tröltzsch, A general theorem on error estimates with application to a quasilinear elliptic optimal control problem. Comput. Optim. Appl. 53 (2012) 173–206. [CrossRef] [Google Scholar]
  8. D. Chenais and E. Zuazua, Controllability of an elliptic equation and its finite difference approximation by the shape of the domain. Numer. Math. 95 (2003) 63–99. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Chenais and E. Zuazua, Finite-element approximation of 2D elliptic optimal design. J. Math. Pures Appl. 85 (2006) 225–249. [Google Scholar]
  10. T. Dupont and R. Scott, Polynomial approximation of functions in Sobolev spaces. Math. Comput. 34 (1980) 441–463. [CrossRef] [MathSciNet] [Google Scholar]
  11. K. Eppler, H. Harbrecht, and R. Schneider, On convergence in elliptic shape optimization. SIAM J. Control Optim. 46 (2007) 61–83 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Grisvard, Elliptic problems in nonsmooth domains, vol. 24, Monographs and Studies in Mathematics, Pitman. Advanced Publishing Program, Boston, MA (1985). [Google Scholar]
  13. J. Haslinger and R.A.E. Mäkinen, Introduction to shape optimization. Theory, approximation, and computation, vol. 7, Advances in Design and Control, Society for Industrial and Applied Mathematics SIAM. Philadelphia, PA (2003). [Google Scholar]
  14. J. Haslinger and P. Neittaanmäki, Finite element approximation for optimal shape, material and topology design. John Wiley & Sons Ltd., Chichester, 2nd edition (1996). [Google Scholar]
  15. K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications, vol. 15, Advances in Design and Control, Society for Industrial and Applied Mathematics. SIAM, Philadelphia, PA (2008). [Google Scholar]
  16. D.S. Jerison and C.E. Kenig, The Neumann problem on Lipschitz domains. Bull. Amer. Math. Soc. (N.S.) 4 (1981) 203–207. [Google Scholar]
  17. D.S. Jerison and C.E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains. J. Funct. Anal. 130 (1995) 161–219. [CrossRef] [MathSciNet] [Google Scholar]
  18. J. Kadlec, The regularity of the solution of the Poisson problem in a domain whose boundary is similar to that of a convex domain. Czechoslovak Math. J. 14 (1964) 386–393. [MathSciNet] [Google Scholar]
  19. K. Kunisch and G. Peichl, Numerical gradients for shape optimization based on embedding domain techniques. Comput. Optim. Appl. 18 (2001) 95–114. [CrossRef] [Google Scholar]
  20. M. Laumen, A comparison of numerical methods for optimal shape design problems. Optim. Methods Softw. 10 (1999) 497–537. [CrossRef] [Google Scholar]
  21. M. Laumen, Newton’s method for a class of optimal shape design problems. SIAM J. Optim. 10 (2000) 503–533 (electronic). [CrossRef] [Google Scholar]
  22. J. Nečas, Sur la coercivité des formes sesquilinéaires, elliptiques. Rev. Roumaine Math. Pures Appl. 9 (1964) 47–69. [MathSciNet] [Google Scholar]
  23. R. Rannacher and R. Scott, Some optimal error estimates for piecewise linear finite element approximations. Math. Comput. 38 (1982) 437–445. [CrossRef] [MathSciNet] [Google Scholar]
  24. G. Savaré, Regularity results for elliptic equations in Lipschitz domains. J. Funct. Anal. 152 (1998) 176–201. [CrossRef] [MathSciNet] [Google Scholar]
  25. T. Slawig, Shape optimization for semi-linear elliptic equations based on an embedding domain method. Appl. Math. Optim. 49 (2004) 183–199. [MathSciNet] [Google Scholar]
  26. J. Sokołowski and J.-P. Zolésio, Introduction to shape optimization, Shape sensitivity analysis, vol. 16, Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1992). [Google Scholar]
  27. F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen, Vieweg+Teubner (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you