Volume 48, Number 2, March-April 2014
Multiscale problems and techniques
Page(s) 553 - 581
Published online 20 January 2014
  1. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864. [Google Scholar]
  2. B. Andreianov, F. Boyer and F. Hubert, Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differ. Eqs. 23 (2007) 145–195. [Google Scholar]
  3. D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numerica 15 (2006) 1–155. [Google Scholar]
  4. A. Back, Étude théorique et numérique des équations de Vlasov–Maxwell dans le formalisme covariant. Ph.D. thesis, University of Strasbourg (2011). [Google Scholar]
  5. P. Bochev and J.M. Hyman, Principles of mimetic discretizations of differential operators, Compatible Spatial Discretization. In vol. 142 of The IMA Volumes Math. Appl., edited by D. Arnold, P. Bochev, R. Lehoucq, R.A. Nicolaides and M. Shashkov (2005) 89–120. [Google Scholar]
  6. A. Bossavit, On the geometry of electromagnetism. J. Japan Soc. Appl. Electromagn. Mech. 6 (1998) (no 1) 17–28, (no 2) 114–23, (no 3) 233–40, (no 4) 318–26. [Google Scholar]
  7. A. Bossavit, Computational electromagnetism and geometry. J. Japan Soc. Appl. Electromagn. Mech. 7-8 (1999–2000) (no 1) 150–9, (no 2) 294–301, (no 3) 401–8, (no 4) 102–9, (no 5) 203–9, (no 6) 372–7. [Google Scholar]
  8. F. Brezzi, A. Buffa and K. Lipnikov, Mimetic finite difference for elliptic problem. Math. Model. Numer. Anal. 43 (2009) 277–295. [Google Scholar]
  9. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. [Google Scholar]
  10. A. Buffa and S.H. Christiansen, A dual finite element complex on the barycentric refinement. Math. Comput. 76 (2007) 1743–1769. [CrossRef] [Google Scholar]
  11. S.H. Christiansen, A construction of spaces of compatible differential forms on cellular complexes. Math. Models Methods Appl. Sci. 18 (2008) 739–757. [CrossRef] [MathSciNet] [Google Scholar]
  12. S.H. Christiansen, H.Z. Munthe-Kaas and B. Owren, Topics in structure-preserving discretization. Acta Numer. 20 (2011) 1–119. [CrossRef] [MathSciNet] [Google Scholar]
  13. L. Codecasa, R. Specogna and F. Trevisan, Base functions and discrete constitutive relations for staggered polyhedral grids. Comput. Methods Appl. Mech. Engrg. 198 (2009) 1117–1123. [CrossRef] [MathSciNet] [Google Scholar]
  14. L. Codecasa, R. Specogna and F. Trevisan, A new set of basis functions for the discrete geometric approach. J. Comput. Phys. 229 (2010) 7401–7410. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Codecasa and F. Trevisan, Convergence of electromagnetic problems modelled by discrete geometric approach. CMES 58 (2010) 15–44. [Google Scholar]
  16. M. Desbrun, A.N. Hirani, M. Leok and J.E. Marsden, Discrete Exterior Calculus. Technical report (2005). [Google Scholar]
  17. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods, in vol. 69 of SMAI Math. Appl. Springer (2012). [Google Scholar]
  18. J. Dodziuk, Finite-difference approach to the Hodge theory of harmonic forms. Amer. J. Math. 98 (1976) 79–104. [CrossRef] [MathSciNet] [Google Scholar]
  19. K. Domelevo and P. Omnes, A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids. ESAIM: M2AN 39 (2005) 1203–1249. [CrossRef] [EDP Sciences] [Google Scholar]
  20. J. Droniou and R. Eymard, A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math. 105 (2006) 35–71. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A Unified Approach to Mimetic Finite Difference, Hybrid Finite Volume and Mixed Finite Volume Methods. Math. Models and Methods Appl. Sci. 20 (2010) 265–295. [Google Scholar]
  22. R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
  23. R. Eymard, C. Guichard and R. Herbin, Small stencil 3d schemes for diffusive flows in porious media. ESAIM: M2AN 46 (2012) 265–290. [CrossRef] [EDP Sciences] [Google Scholar]
  24. R. Eymard, G. Henry, R. Herbin, F. Hubert, R. Klöfkorn and G. Manzini, 3d benchmark on discretization schemes for anisotropic diffusion problems on general grids, in vol. 2 of Finite Volumes for Complex Applic. VI – Problems Perspectives. Springer (2011) 95–130. [Google Scholar]
  25. A. Gillette, Stability of dual discretization methods for partial differential equations. Ph.D. thesis, University of Texas at Austin (2011). [Google Scholar]
  26. R. Hiptmair, Discrete hodge operators: An algebraic perspective. Progress In Electromagnetics Research 32 (2001) 247–269. [CrossRef] [Google Scholar]
  27. Xiao Hua Hu and R.A. Nicolaides, Covolume techniques for anisotropic media. Numer. Math. 61 (1992) 215–234. [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Hyman and J. Scovel, Deriving mimetic difference approximations to differential operators using algebraic topology. Los Alamos National Laboratory (1988). [Google Scholar]
  29. J. Kreeft, A. Palha and M. Gerritsma, Mimetic framework on curvilinear quadrilaterals of arbitrary order. Technical Report, Delft University (2011) ArXiv: 1111.4304v1. [Google Scholar]
  30. C. Mattiussi, The finite volume, finite element, and finite difference methods as numerical methods for physical field problems. In vol. 113 of Advances in Imaging and Electron Phys. Elsevier (2000) 1–146. [Google Scholar]
  31. J.B. Perot and V. Subramanian, Discrete calculus methods for diffusion. J. Comput. Phys. 224 (2007) 59–81. [CrossRef] [Google Scholar]
  32. T. Tarhasaari, L. Kettunen and A. Bossavit, Some realizations of a discrete hodge operator: A reinterpretation of finite element techniques. IEEE Transactions on Magnetics 35 (1999) 1494–1497. [Google Scholar]
  33. E. Tonti, On the formal structure of physical theories. Instituto di matematica, Politecnico, Milano (1975). [Google Scholar]
  34. M. Vohralík and B. Wohlmuth, Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods. Math. Models Methods Appl. Sci. 23 (2013) 803–838. [Google Scholar]
  35. H. Whitney, Geometric integration theory. Princeton University Press, Princeton, N.J. (1957). [Google Scholar]
  36. S. Zaglmayr, High order finite element methods for electromagnetic field computation. Ph.D. thesis, Johannes Kepler Universität Linz (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you