Free Access
Issue |
ESAIM: M2AN
Volume 48, Number 2, March-April 2014
Multiscale problems and techniques
|
|
---|---|---|
Page(s) | 603 - 621 | |
DOI | https://doi.org/10.1051/m2an/2013107 | |
Published online | 20 January 2014 |
- K.A. Ames and J.F. Epperson, A kernel-based method for the approximate solution of backward parabolic problems. SIAM J. Numer. Anal. (1997) 1357–1390. [Google Scholar]
- K.A. Ames and L.E. Payne, Asymptotic behavior for two regularizations of the Cauchy problem for the backward heat equation. Math. Models Methods Appl. Sci. 8 (1998) 187. [CrossRef] [Google Scholar]
- B. Berkowitz, H. Scher and S.E. Silliman, Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36 (2000) 149–158. [Google Scholar]
- J. Cheng, J. Nakagawa, M. Yamamoto and T. Yamazaki, Uniqueness in an inverse problem for a one-dimensional fractional diffusion equation. Inverse Problems 25 (2009) 115002. [CrossRef] [Google Scholar]
- G. Chi, G. Li and X. Jia, Numerical inversions of a source term in the fade with a dirichlet boundary condition using final observations. Comput. Math. Appl. 62 (2011) 1619–1626. [CrossRef] [Google Scholar]
- G.W. Clark and S.F. Oppenheimer, Quasireversibility methods for non-well-posed problems Electron. J. Differ. equ. (1994) 1–9. [Google Scholar]
- M. Denche and K. Bessila, A modified quasi-boundary value method for ill-posed problems. J. Math. Anal. Appl. 301 (2005) 419–426. [CrossRef] [Google Scholar]
- X.L. Feng, L. Eldén and C.L. Fu, A quasi-boundary-value method for the cauchy problem for elliptic equations with nonhomogeneous neumann data. J. Inverse Ill-Posed Probl. 18 (2010) 617–645. [MathSciNet] [Google Scholar]
- D.N. Hào, N.V. Duc and D. Lesnic, A non-local boundary value problem method for the Cauchy problem for elliptic equations. Inverse Probl. 25 (2009) 055002. [CrossRef] [Google Scholar]
- D.N. Hào, N.V. Duc and D. Lesnic, Regularization of parabolic equations backward in time by a non-local boundary value problem method. IMA J. Appl. Math. 75 (2010) 291–315. [CrossRef] [MathSciNet] [Google Scholar]
- D.N. Hào, N.V. Duc and H. Sahli, A non-local boundary value problem method for parabolic equations backward in time. J. Math. Anal. Appl. 345 (2008) 805–815. [CrossRef] [Google Scholar]
- Y.J. Jiang and J.T. Ma, High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235 (2011) 3285–3290. [CrossRef] [Google Scholar]
- B.T. Jin and W. Rundell, An inverse problem for a one-dimensional time-fractional diffusion problem. Inverse Probl. 28 (2012). [Google Scholar]
- S.M. Kirkup and M. Wadsworth, Solution of inverse diffusion problems by operator-splitting methods. Appl. Math. Modelling 26 (2002) 1003–1018. [CrossRef] [Google Scholar]
- J.J. Liu and M. Yamamoto, A backward problem for the time-fractional diffusion equation. Appl. Anal. 89 (2010) 1769–1788. [CrossRef] [Google Scholar]
- Y. Luchko, Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation. Comput. Math. Appl. 59 (2010) 1766–1772. [CrossRef] [Google Scholar]
- Y. Luchko, Maximum principle and its application for the time-fractional diffusion equations. Fract. Calc. Appl. Anal. 14 (2011) 110–124. [CrossRef] [Google Scholar]
- F. Mainardi, G. Pagnini and R. Gorenflo, Some aspects of fractional diffusion equations of single and distributed order. Appl. Math. Comput. 187 (2007) 295–305. [CrossRef] [Google Scholar]
- R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000) 1–77. [NASA ADS] [CrossRef] [Google Scholar]
- R. Metzler and J. Klafter, Subdiffusive transport close to thermal equilibrium: From the Langevin equation to fractional diffusion. Phys. Rev. E 61 (2000) 6308–6311. [CrossRef] [Google Scholar]
- D.A. Murio, Stable numerical solution of a fractional-diffusion inverse heat conduction problem. Comput. Math. Appl. 53 (2007) 1492–1501. [CrossRef] [Google Scholar]
- D.A. Murio, Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56 (2008) 1138–1145. [Google Scholar]
- D.A. Murio, Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56 (2008) 2371–2381. [Google Scholar]
- D.A. Murio, Stable numerical evaluation of Grünwald-Letnikov fractional derivatives applied to a fractional ihcp. Inverse Probl. Sci. Engrg. 17 (2009) 229–243. [Google Scholar]
- D.A. Murio and C.E. Mejía, Source terms identification for time fractional diffusion equation. Revista Colombiana de Matemáticas 42 (2008) 25–46. [Google Scholar]
- D.A. Murio, Implicit finite difference approximation for time fractional diffusion equations. Comput. Math. Appl. 56 (2008) 1138–1145. [Google Scholar]
- I. Podlubny, Fractional differential equations, in vol. 198 of Math. Sci. Eng. Academic Press Inc., San Diego, CA (1999). [Google Scholar]
- I. Podlubny and M. Kacenak, Mittag-leffler function. The MATLAB routine, available at http://www.mathworks.com/matlabcentral/fileexchange (2006). [Google Scholar]
- H. Pollard, The completely monotonic character of the mittag-leffler function Eα( − x). Bull. Amer. Math. Soc. 54 (1948) 1115–1116. [Google Scholar]
- Z. Qian, Optimal modified method for a fractional-diffusion inverse heat conduction problem. Inverse Probl. Sci. Engrg. 18 (2010) 521–533. [CrossRef] [Google Scholar]
- W. Rundell, X. Xu and L. H. Zuo, The determination of an unknown boundary condition in a fractional diffusion equation. Appl. Anal. http://dx.doi.org/10.1080/00036811.2012.686605. [Google Scholar]
- K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382 (2011) 426–447. [CrossRef] [MathSciNet] [Google Scholar]
- E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance. Physica A 284 (2000) 376–384. [CrossRef] [MathSciNet] [Google Scholar]
- R. Scherer, S.L. Kalla, L. Boyadjiev and B. Al-Saqabi, Numerical treatment of fractional heat equations. Appl. Numer. Math. 58 (2008) 1212–1223. [CrossRef] [Google Scholar]
- R.E. Showalter, The final value problem for evolution equations. J. Math. Anal. Appl. 47 (1974) 563–572. [CrossRef] [Google Scholar]
- R.E. Showalter, Cauchy problem for hyper-parabolic partial differential equations. North-Holland Math. Stud. 110 (1985) 421–425. [CrossRef] [Google Scholar]
- I.M. Sokolov and J. Klafter, From diffusion to anomalous diffusion: A century after Einsteins Brownian motion. Chaos 15 (2005) 1–7. [Google Scholar]
- H. Wei, W. Chen, H.G. Sun and X.C. Li, A coupled method for inverse source problem of spatial fractional anomalous diffusion equations. Inverse Probl. Sci. Engrg. 18 (2010) 945–956. [CrossRef] [Google Scholar]
- W. Wyss, The fractional diffusion equation. J. Math. Phys. 27 (1986) 2782–2785. [CrossRef] [Google Scholar]
- M. Yang and J.J. Liu, Solving a final value fractional diffusion problem by boundary condition regularization. Appl. Numer. Math. 66 (2013) 45–58. [CrossRef] [Google Scholar]
- P. Zhang and F. Liu. Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22 (2006) 87–99. [CrossRef] [MathSciNet] [Google Scholar]
- Y. Zhang and X. Xu, Inverse source problem for a fractional diffusion equation. Inverse Probl. 27 (2011) 035010. [CrossRef] [Google Scholar]
- G.H. Zheng and T. Wei, Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation. J. Comput. Appl. Math. 233 (2010) 2631–2640. [CrossRef] [Google Scholar]
- G.H. Zheng and T. Wei, A new regularization method for a Cauchy problem of the time fractional diffusion equation. Advances Comput. Math. 36 (2012) 377–398. [CrossRef] [Google Scholar]
- G.H. Zheng and T. Wei, Two regularization methods for solving a riesz-feller space-fractional backward diffusion problem. Inverse Probl. 26 (2010) 115017. [CrossRef] [Google Scholar]
- P. Zhuang and F. Liu, Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22 (2006) 87–99. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.