Volume 48, Number 2, March-April 2014
Multiscale problems and techniques
Page(s) 307 - 323
Published online 20 January 2014
  1. G. Alessandrini and V. Nesi, Univalent σ-harmonic mappings. Arch. Ration. Mech. Anal. 158 (2001) 155–171. [CrossRef] [Google Scholar]
  2. G. Allaire, Shape Optimization by the Homogenization Method, vol. 146 of Appl. Math. Sci. Springer-Verlag, New-York (2002) 456. [Google Scholar]
  3. A. Ancona, Some results and examples about the behavior of harmonic functions and Green’s functions with respect to second order elliptic operators. Nagoya Math. J. 165 (2002) 123–158. [MathSciNet] [Google Scholar]
  4. V.I. Arnold, Ordinary differential equations, translated from the third Russian edition by R. Cooke, Springer Textbook. Springer-Verlag, Berlin (1992) 334. [Google Scholar]
  5. N. Bakhvalov and G. Panasenko, Homogenisation: Averaging Processes in Periodic Media, Mathematical Problems in the Mechanics of Composite Materials, translated from the Russian by D. Leĭtes, vol. 36 of Math. Appl. (Soviet Series). Kluwer Academic Publishers Group, Dordrecht (1989) 366. [Google Scholar]
  6. P. Bauman, A. Marini and V. Nesi, Univalent solutions of an elliptic system of partial differential equations arising in homogenization. Indiana Univ. Math. J. 50 (2001) 747–757. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, in vol. 5 of Stud. Math. Appl. North-Holland Publishing Co., Amsterdam-New York (1978) 700. [Google Scholar]
  8. M. Briane, Correctors for the homogenization of a laminate. Adv. Math. Sci. Appl. 4 (1994) 357–379. [MathSciNet] [Google Scholar]
  9. M. Briane, G.W. Milton and V. Nesi, Change of sign of the corrector’s determinant for homogenization in three-dimensional conductivity. Arch. Ration. Mech. Anal. 173 (2004) 133–150. [CrossRef] [Google Scholar]
  10. M. Briane, and V. Nesi, Is it wise to keep laminating? ESAIM: COCV 10 (2004) 452–477. [CrossRef] [EDP Sciences] [Google Scholar]
  11. A. Cherkaev and Y. Zhang, Optimal anisotropic three-phase conducting composites: Plane problem. Int. J. Solids Struct. 48 (2011) 2800–2813. [CrossRef] [Google Scholar]
  12. B. Dacorogna, Direct Methods in the Calculus of Variations, in vol. 78 of Appl. Math. Sci. Springer-Verlag, Berlin-Heidelberg (1989) 308. [Google Scholar]
  13. V.V. Jikov, S.M. Kozlov and O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, translated from the Russian by G.A. Yosifian. Springer-Verlag, Berlin (1994) 570. [Google Scholar]
  14. G.W. Milton, Modelling the properties of composites by laminates, Homogenization and Effective Moduli of Materials and Media, in vol. 1 of IMA Math. Appl. Springer-Verlag, New York (1986) 150–174. [Google Scholar]
  15. G.W. Milton, The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2002) 719. [Google Scholar]
  16. F. Murat and L. Tartar, H-convergence, Topics in the Mathematical Modelling of Composite Materials, in vol. 31 of Progr. Nonlinear Differ. Equ. Appl., edited by L. Cherkaev and R.V. Kohn. Birkhaüser, Boston (1997) 21–43. [Google Scholar]
  17. V. Nesi, Bounds on the effective conductivity of two-dimensional composites made of n ≥ 3 isotropic phases in prescribed volume fraction: the weighted translation method. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1219–1239. [CrossRef] [MathSciNet] [Google Scholar]
  18. U. Raitums, On the local representation of G-closure. Arch. Rational Mech. Anal. 158 (2001) 213–234. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you