Free Access
Volume 48, Number 5, September-October 2014
Page(s) 1241 - 1278
DOI https://doi.org/10.1051/m2an/2013136
Published online 28 July 2014
  1. Ircam Médiations Recherche/Crèation 1. Modalys (2007). http://forumnet.ircam.fr/701.html.
  2. A. Askenfelt and E.V. Jansson, From touch to string vibrations. I: Timing in the grand piano action. J. Acoust. Soc. Amer. 88 (1990) 52. [CrossRef]
  3. A. Askenfelt, Observations on the transient components of the piano tone. KTH (1993).
  4. B. Bank, F. Avanzini, G. Borin, G. De Poli, F. Fontana and D. Rocchesso, Physically informed signal processing methods for piano sound synthesis: a research overview. EURASIP J. Appl. Signal Process. 2003 (2003) 941–952. [CrossRef]
  5. J. Bensa, S, Bilbao and R. Kronland-Martinet, The simulation of piano string vibration: from physical models to finite difference schemes and digital waveguides. J. Acoust. Soc. Amer. 114 (2003) 1095–1107. [CrossRef] [PubMed]
  6. I. Babuska, J.M. D’Harcourt and C. Schwab, Optimal shear correction factors in hierarchical plate modelling. Math. Modell. Sci. Comput. 1 (1993) 1–30.
  7. S Bilbao, Conservative numerical methods for nonlinear strings. J. Acoust. Soc. Amer. 118 (2005) 3316–3327. [CrossRef]
  8. X Boutillon, Model for piano hammers: Experimental determination and digital simulation. J. Acoust. Soc. Amer. 83 (1988) 746–754. [CrossRef]
  9. B. Bank and L. Sujbert, Generation of longitudinal vibrations in piano strings: From physics to sound synthesis. J. Acoust. Soc. Amer. 117 (2005) 2268–2278. [CrossRef]
  10. A. Chaigne and A. Askenfelt, Numerical simulation of piano strings. I. A physical model for a struck string using finite-difference methods. J. Acoust. Soc. Amer. 95 (1994) 1112–1118. [CrossRef]
  11. J. Chabassier, A. Chaigne and P. Joly, Transitoires de piano et non linéarités des cordes: mesures et simulations. Proc. of the 10th French Acoustical Society Meeting (in french) (2012).
  12. J. Chabassier and M. Duruflé, Energy based simulation of a Timoshenko beam in non-forced rotation. Application to the flexible piano hammer shank. Wave Motion, submitted in (2013).
  13. J. Chabassier and S. Imperiale, Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string. Wave Motion 50 (2012) 456–480. [CrossRef]
  14. J. Chabassier and P. Joly, Energy preserving schemes for nonlinear hamiltonian systems of wave equations. application to the vibrating piano string. Comput. Methods Appl. Mech. Engrg. 199 (2010) 2779–2795. [CrossRef] [MathSciNet]
  15. H.A. Conklin, Design and tone in the mechanoacoustic piano. Part II. Piano structure. J. Acoust. Soc. Amer. 100 (1996) 695–708. [CrossRef]
  16. H.A. Conklin, Piano strings and “phantom” partials. J. Acoust. Soc. Amer. 102 (1997) 659. [CrossRef]
  17. G. Cowper. The shear coefficient in timoshenko’s beam theory. ASME, J. Appl. Math. 33 (1966) 335–340. [CrossRef]
  18. J. Cuenca, Modélisation du couplage corde – chevalet – table d’harmonie dans le registre aigu du piano. JJCAAS 2006 (2006) 1–1.
  19. G. Derveaux, A. Chaigne, P. Joly and E. Bécache, Time-domain simulation of a guitar: Model and method. J. Acoust. Soc. Amer. 114 (2003) 3368–3383. [CrossRef] [PubMed]
  20. K. Ege, La table d’harmonie du piano – études modales en basses et moyennes fréquences. Thèse de Doctorat (2010) 1–190.
  21. N. Giordano and M. Jiang, Physical modeling of the piano. EURASIP J. Appl. Signal Process. 2004 (2004) 926–933. [CrossRef]
  22. Ph. Guillaume, Pianoteq. Available at http://www.pianoteq.com.
  23. A. Izadbakhsh, J. McPhee and S. Birkett, Dynamic modeling and experimental testing of a piano action mechanism with a flexible hammer shank. J. Comput. Nonlinear Dyn. 3 (2008) 1–10. [CrossRef]
  24. P.M. Morse and K.U. Ingard, Theoretical Acoustics. Princeton University Press (1968).
  25. I. Nakamura and S. Iwaoka, Piano tone synthesis using digital filters by computer simulation. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’86 11 (1986) 1293–1296. [CrossRef]
  26. M. Podlesak and A.R. Lee, Dispersion of waves in piano strings. J. Acoust. Soc. Amer. 83 (1988) 305–317. [CrossRef]
  27. L. Rhaouti, A. Chaigne and P. Joly, Time-domain modeling and numerical simulation of a kettledrum. J. Acoust. Soc. Amer. 105 (1999) 3545–3562. [CrossRef]
  28. E. Reissner, The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12 (1945) 69–77.
  29. A. Stulov, Hysteretic model of the grand piano hammer felt. J. Acoust. Soc. Amer. 97 (1995) 2577. [CrossRef]
  30. L.T.-Tsien, Global classical solutions for quasilinear hyperbolic systems. Wiley (1994).
  31. C.P. Vyasarayani, S. Birkett and J. McPhee, Modeling the dynamics of a compliant piano action mechanism impacting an elastic stiff string. J. Acoust. Soc. Amer. 125 (2009) 4034–4042. [CrossRef]
  32. G. Weinreich, Coupled piano strings. J. Acoust. Soc. Amer. 62 (1977) 1474. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you