Highlight
Free Access
Issue
ESAIM: M2AN
Volume 48, Number 5, September-October 2014
Page(s) 1241 - 1278
DOI https://doi.org/10.1051/m2an/2013136
Published online 28 July 2014
  1. Ircam Médiations Recherche/Crèation 1. Modalys (2007). http://forumnet.ircam.fr/701.html. [Google Scholar]
  2. A. Askenfelt and E.V. Jansson, From touch to string vibrations. I: Timing in the grand piano action. J. Acoust. Soc. Amer. 88 (1990) 52. [CrossRef] [Google Scholar]
  3. A. Askenfelt, Observations on the transient components of the piano tone. KTH (1993). [Google Scholar]
  4. B. Bank, F. Avanzini, G. Borin, G. De Poli, F. Fontana and D. Rocchesso, Physically informed signal processing methods for piano sound synthesis: a research overview. EURASIP J. Appl. Signal Process. 2003 (2003) 941–952. [CrossRef] [Google Scholar]
  5. J. Bensa, S, Bilbao and R. Kronland-Martinet, The simulation of piano string vibration: from physical models to finite difference schemes and digital waveguides. J. Acoust. Soc. Amer. 114 (2003) 1095–1107. [CrossRef] [PubMed] [Google Scholar]
  6. I. Babuska, J.M. D’Harcourt and C. Schwab, Optimal shear correction factors in hierarchical plate modelling. Math. Modell. Sci. Comput. 1 (1993) 1–30. [Google Scholar]
  7. S Bilbao, Conservative numerical methods for nonlinear strings. J. Acoust. Soc. Amer. 118 (2005) 3316–3327. [CrossRef] [Google Scholar]
  8. X Boutillon, Model for piano hammers: Experimental determination and digital simulation. J. Acoust. Soc. Amer. 83 (1988) 746–754. [CrossRef] [Google Scholar]
  9. B. Bank and L. Sujbert, Generation of longitudinal vibrations in piano strings: From physics to sound synthesis. J. Acoust. Soc. Amer. 117 (2005) 2268–2278. [CrossRef] [Google Scholar]
  10. A. Chaigne and A. Askenfelt, Numerical simulation of piano strings. I. A physical model for a struck string using finite-difference methods. J. Acoust. Soc. Amer. 95 (1994) 1112–1118. [CrossRef] [Google Scholar]
  11. J. Chabassier, A. Chaigne and P. Joly, Transitoires de piano et non linéarités des cordes: mesures et simulations. Proc. of the 10th French Acoustical Society Meeting (in french) (2012). [Google Scholar]
  12. J. Chabassier and M. Duruflé, Energy based simulation of a Timoshenko beam in non-forced rotation. Application to the flexible piano hammer shank. Wave Motion, submitted in (2013). [Google Scholar]
  13. J. Chabassier and S. Imperiale, Stability and dispersion analysis of improved time discretization for simply supported prestressed Timoshenko systems. Application to the stiff piano string. Wave Motion 50 (2012) 456–480. [CrossRef] [Google Scholar]
  14. J. Chabassier and P. Joly, Energy preserving schemes for nonlinear hamiltonian systems of wave equations. application to the vibrating piano string. Comput. Methods Appl. Mech. Engrg. 199 (2010) 2779–2795. [CrossRef] [MathSciNet] [Google Scholar]
  15. H.A. Conklin, Design and tone in the mechanoacoustic piano. Part II. Piano structure. J. Acoust. Soc. Amer. 100 (1996) 695–708. [CrossRef] [Google Scholar]
  16. H.A. Conklin, Piano strings and “phantom” partials. J. Acoust. Soc. Amer. 102 (1997) 659. [CrossRef] [Google Scholar]
  17. G. Cowper. The shear coefficient in timoshenko’s beam theory. ASME, J. Appl. Math. 33 (1966) 335–340. [CrossRef] [Google Scholar]
  18. J. Cuenca, Modélisation du couplage corde – chevalet – table d’harmonie dans le registre aigu du piano. JJCAAS 2006 (2006) 1–1. [Google Scholar]
  19. G. Derveaux, A. Chaigne, P. Joly and E. Bécache, Time-domain simulation of a guitar: Model and method. J. Acoust. Soc. Amer. 114 (2003) 3368–3383. [CrossRef] [PubMed] [Google Scholar]
  20. K. Ege, La table d’harmonie du piano – études modales en basses et moyennes fréquences. Thèse de Doctorat (2010) 1–190. [Google Scholar]
  21. N. Giordano and M. Jiang, Physical modeling of the piano. EURASIP J. Appl. Signal Process. 2004 (2004) 926–933. [CrossRef] [Google Scholar]
  22. Ph. Guillaume, Pianoteq. Available at http://www.pianoteq.com. [Google Scholar]
  23. A. Izadbakhsh, J. McPhee and S. Birkett, Dynamic modeling and experimental testing of a piano action mechanism with a flexible hammer shank. J. Comput. Nonlinear Dyn. 3 (2008) 1–10. [CrossRef] [Google Scholar]
  24. P.M. Morse and K.U. Ingard, Theoretical Acoustics. Princeton University Press (1968). [Google Scholar]
  25. I. Nakamura and S. Iwaoka, Piano tone synthesis using digital filters by computer simulation. Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP’86 11 (1986) 1293–1296. [CrossRef] [Google Scholar]
  26. M. Podlesak and A.R. Lee, Dispersion of waves in piano strings. J. Acoust. Soc. Amer. 83 (1988) 305–317. [CrossRef] [Google Scholar]
  27. L. Rhaouti, A. Chaigne and P. Joly, Time-domain modeling and numerical simulation of a kettledrum. J. Acoust. Soc. Amer. 105 (1999) 3545–3562. [CrossRef] [Google Scholar]
  28. E. Reissner, The effect of transverse shear deformation on the bending of elastic plates. J. Appl. Mech. 12 (1945) 69–77. [Google Scholar]
  29. A. Stulov, Hysteretic model of the grand piano hammer felt. J. Acoust. Soc. Amer. 97 (1995) 2577. [CrossRef] [Google Scholar]
  30. L.T.-Tsien, Global classical solutions for quasilinear hyperbolic systems. Wiley (1994). [Google Scholar]
  31. C.P. Vyasarayani, S. Birkett and J. McPhee, Modeling the dynamics of a compliant piano action mechanism impacting an elastic stiff string. J. Acoust. Soc. Amer. 125 (2009) 4034–4042. [CrossRef] [Google Scholar]
  32. G. Weinreich, Coupled piano strings. J. Acoust. Soc. Amer. 62 (1977) 1474. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you