Free Access
Volume 48, Number 5, September-October 2014
Page(s) 1303 - 1329
Published online 28 July 2014
  1. H.T. Banks and K. Kunisch, Estimation techniques for distributed parameter systems, vol. 1. Systems & Control: Foundations & Appl. Birkhäuser Boston Inc., Boston, MA (1989). [Google Scholar]
  2. G.T. Brauns, R.J. Bishop, M.B. Steer, J.J. Paulos and S.H. Ardalan, Table-based modeling of delta-sigma modulators using Zsim. IEEE Trans. Computer-Aided Design Integr. Circuits Syst. 9 (1990) 142–150. [CrossRef] [Google Scholar]
  3. B. Delyon, M. Lavielle and E. Moulines, Convergence of a stochastic approximation version of the EM algorithm. Ann. Statis. 27 94–128 (1999). [Google Scholar]
  4. S. Donnet, J.-L. Foulley and A. Samson, Bayesian Analysis of Growth Curves Using Mixed Models Defined by Stochastic Differential Equations. Biometrics 66 (2010) 733–741. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  5. S. Donnet and A. Samson, Parametric inference for mixed models defined by stochastic differential equations. ESAIM: PS 12 (2008) 196–218. [CrossRef] [EDP Sciences] [Google Scholar]
  6. R.A. Fisher, The Genetical Theory of Natural Selection. Oxford University Press (1930). [Google Scholar]
  7. M.B. Giles and N.A. Pierce, An introduction to the adjoint approach to design. Flow, Turbulence and Combustion 65 (2000) 393–415. [CrossRef] [Google Scholar]
  8. W.M. Goughran, E. Grosse and D.J. Rose, CAzM: A circuit analyzer with macromodeling. IEEE Trans. Electron. Devices 30 (1983) 1207–1213. [CrossRef] [Google Scholar]
  9. V. Isakov, Inverse problems for partial differential equations, vol. 127. Appl. Math. Sci., 2nd edition. Springer, New York (2006). [Google Scholar]
  10. J. Kaipio and E. Somersalo, Statistical and computational inverse problems, vol. 160. Appl. Math. Sci. Springer-Verlag, New York (2005). [Google Scholar]
  11. A. Kolmogoroff, I. Petrovsky and N. Piscounoff, Étude de l’equation de la diffusion avec croissance de la quantite de matiere et son application a un problème biologique. Bulletin de l’université d’État à Moscou, Section A I (1937) 1–26. [Google Scholar]
  12. E. Kuhn and M. Lavielle, Maximum likelihood estimation in nonlinear mixed effects models. Comput. Statis. Data Anal. 49 (2005) 1020–1038. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Lavielle, Private Communication (2012). [Google Scholar]
  14. M. Lavielle and K. Bleakley, Population Approach & Mixed Effects Models – Models, Tasks, Tools & Methods. Avalaible at INRIA (2013). [Google Scholar]
  15. M. Lavielle and F. Mentré, Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the monolix software. J. Pharmacokinetics and Pharmacodynamics 34 (2007) 229–249. [CrossRef] [PubMed] [Google Scholar]
  16. J.-L. Lions, Optimal control of systems governed by partial differential equations. Translated from the French by S.K. Mitter. Springer-Verlag, New York (1971). [Google Scholar]
  17. L. Nie, Strong consistency of the maximum likelihood estimator in generalized linear and nonlinear mixed-effects models. Metrika 63 (2006) 123–143. [CrossRef] [Google Scholar]
  18. L. Nie and M. Yang, Strong consistency of mle in nonlinear mixed-effects models with large cluster size. Sankhya: Indian J. Statis. 67 (2005) 736–763. [Google Scholar]
  19. E. Snoeck, P. Chanu, M. Lavielle, P. Jacqmin, E.N. Jonsson, K. Jorga, T. Goggin, J. Grippo, N.L. Jumbe and N. Frey, A Comprehensive Hepatitis C Viral Kinetic Model Explaining Cure. Clinical Pharmacology & Therapeutics 87 (2010) 706–713. [CrossRef] [Google Scholar]
  20. A. Tarantola, Inverse problem theory and methods for model parameter estimation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2005). [Google Scholar]
  21. M. Team, The Monolix software, Version 4.1.2. Analysis of mixed effects models. Available at LIXOFT and INRIA (2012). [Google Scholar]
  22. G. Yu and P. Li, Efficient look-up-table-based modeling for robust design of sigma-delta ADCs. IEEE Trans. Circuits Syst. – I 54 (2007) 1513–1528. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you