Free Access
Issue
ESAIM: M2AN
Volume 48, Number 5, September-October 2014
Page(s) 1351 - 1379
DOI https://doi.org/10.1051/m2an/2013142
Published online 13 August 2014
  1. G. Arampatzis, M.A. Katsoulakis, P. Plechac, M. Taufer and L. Xu, Hierarchical fractional-step approximations and parallel kinetic Monte Carlo algorithms. J. Comput. Phys. 231 (2012) 7795–7841. [CrossRef] [Google Scholar]
  2. V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the density. Monte Carlo Methods Appl. 2 (1996) 93–128. [Google Scholar]
  3. V. Bally and D. Talay, The law of the Euler scheme for stochastic differential equations. I. Convergence rate of the distribution function. Probab. Theory Related Fields 104 (1996) 43–60. [CrossRef] [MathSciNet] [Google Scholar]
  4. N. Bou-Rabee and E. Vanden-Eijnden, Pathwise accuracy and ergodicity of Metropolized integrators for SDEs. Commut. Pure Appl. Math. LXIII (2010) 0655–0696. [Google Scholar]
  5. A. Brunger, C.B. Brooks and M. Karplus, Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem. Phys. Lett. 105 (1984) 495–500. [CrossRef] [Google Scholar]
  6. S. Delong, B.E. Griffith, E. Vanden-Eijnden and A. Donev, Temporal integrators for fluctuating hydrodynamics. Phys. Rev. E 87 (2013) 11. [Google Scholar]
  7. G. Gallavotti and E.G.D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74 (1995) 2694–2697. [CrossRef] [PubMed] [Google Scholar]
  8. C. Gardiner, Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences. Springer Series in Synergetics (1985). [Google Scholar]
  9. D.T. Gillespie, Markov Processes: An Introduction for Physical Scientists. Academic Press, New York (1992). [Google Scholar]
  10. E. Hairer, Ch. Lubich and G. Wanner, Structure-preserving algorithms for ordinary differential equations, in Geometric Numerical Integration. vol. 31 of Springer Ser. Comput. Math., 2nd edition. Springer-Verlag, Berlin (2006). [Google Scholar]
  11. V. Jakšić, C.-A. Pillet and L. Rey-Bellet, Entropic fluctuations in statistical mechanics: I. classical dynamical systems. Nonlinearity 2 (2011) 699–763. [Google Scholar]
  12. R. Khasminskii, Stochastic Stability of Differential Equations, 2nd edition. Springer (2010). [Google Scholar]
  13. P.E. Kloeden and E. Platen, Numerical Solution Stochastic Differential Equations, 3rd edition. Springer-Verlag (1999). [Google Scholar]
  14. J.L. Lebowitz and H. Spohn, A Gallavotti-Cohen type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95 (1999) 333–365. [CrossRef] [Google Scholar]
  15. T. Lelievre, M. Rousset and G. Stoltz, Free Energy Computations: A Math. Perspective. Imperial College Press (2010). [Google Scholar]
  16. C. Maes and K. Netočný, Minimum entropy production principle from a dynamical fluctuation law. J. Math. Phys. 48 (2007) 053306. [CrossRef] [Google Scholar]
  17. C. Maes, K. Netočný and B. Wynants, Steady state statistics of driven diffusions. Phys. A 387 (2008) 2675–2689. [Google Scholar]
  18. C. Maes, F. Redig and A. Van Moffaert, On the definition of entropy production, via examples. J. Math. Phys. 41 (2000) 1528–1553. [CrossRef] [Google Scholar]
  19. J.C. Mattingly, A.M. Stuart and M.V. Tretyakov, Convergence of numerical time-averaging and stationary measures via Poisson equations. SIAM J. Numer. Anal. 48 (2010) 552–577. [CrossRef] [Google Scholar]
  20. J.C. Mattingly, A.M. Stuart and D.J. Higham, Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise. Stoch. Process. Appl. 101 (2002) 185–232. [Google Scholar]
  21. S.P. Meyn and R.L. Tweedie, Markov Chains and Stochastic Stability. Springer-Verlag (1993). [Google Scholar]
  22. G. Milstein and M. Tretyakov, Stochastic Numerics for Mathematical Physics for Springer (2004). [Google Scholar]
  23. G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems. Wiley, New York (1977). [Google Scholar]
  24. L. Rey-Bellet and L.E. Thomas, Exponential convergence to non-equilibrium stationary states in classical statistical mechanics. Comm. Math. Phys. 225 (2002) 305–329. [CrossRef] [MathSciNet] [Google Scholar]
  25. L. Rey-Bellet, Ergodic properties of Markov processes. In Open quantum systems. II, vol. 1881. Lect. Notes Math. Springer, Berlin (2006) 1–39. [Google Scholar]
  26. G.O. Roberts and R.L. Tweedie, Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 (1996) 95–110. [CrossRef] [MathSciNet] [Google Scholar]
  27. T. Schlick, Molecular Modeling and Simulation. Springer (2002). [Google Scholar]
  28. J. Schnakenberg, Network theory of microscopic and macroscopic behavior of master equation systems. Rev. Modern Phys. 48 (1976) 571–585. [Google Scholar]
  29. Yunsic Shim and J.G. Amar, Semirigorous synchronous relaxation algorithm for parallel kinetic Monte Carlo simulations of thin film growth. Phys. Rev. B 71 (2005) 125–432. [Google Scholar]
  30. D. Talay, Second order discretization schemes of stochastic differential systems for the computation of the invariant law. Stochastics Stochastics Rep. 29 (1990) 13–36. [CrossRef] [Google Scholar]
  31. D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme. Markov Processes and Related Fields 8 (2002) 163–198. [MathSciNet] [Google Scholar]
  32. D. Talay and L. Tubaro, Expansion of the global error for numerical schemes solving stochastic differential equations. Stoch. Anal. Appl. 8 (1990) 483–509. [Google Scholar]
  33. N.G. van Kampen, Stochastic Processes in Physics and Chemistry. North Holland (2006). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you