Free Access
Volume 48, Number 6, November-December 2014
Page(s) 1859 - 1876
Published online 10 October 2014
  1. R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003). [Google Scholar]
  2. R. Altmann. Index reduction for operator differential-algebraic equations in elastodynamics. Z. Angew. Math. Mech. (ZAMM) 93 (2013) 648–664. [CrossRef] [Google Scholar]
  3. R. Altmann. Modeling flexible multibody systems by moving Dirichlet boundary conditions. In Proc. of Multibody Dynamics 2013 - ECCOMAS Thematic Conference, Zagreb, Croatia, July 1–4 (2013). [Google Scholar]
  4. M. Arnold and B. Simeon, The simulation of pantograph and catenary: a PDAE approach. Preprint (1990), Technische Universität Darmstadt, Germany (1998). [Google Scholar]
  5. M. Arnold and B. Simeon, Pantograph and catenary dynamics: A benchmark problem and its numerical solution. Appl. Numer. Math. 34 (2000) 345–362. [CrossRef] [Google Scholar]
  6. I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179–192. [CrossRef] [Google Scholar]
  7. I. Babuška and G.N. Gatica, On the mixed finite element method with Lagrange multipliers. Numer. Meth. Part. D. E. 19 (2003) 192–210. [Google Scholar]
  8. F. Ben Belgacem, The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173–197. Doi:10.1007/s002110050468. [CrossRef] [MathSciNet] [Google Scholar]
  9. D. Braess, Finite Elements – Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd edn. Cambridge University Press, New York (2007). [Google Scholar]
  10. J.H. Bramble, The Lagrange multiplier method for Dirichlet’s problem. Math. Comput. 37 (1981) 1–11. [Google Scholar]
  11. S. C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edn. Springer-Verlag, New York (2008). [Google Scholar]
  12. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). [Google Scholar]
  13. F.J. Cavalieri, A. Cardona, V.D. Fachinotti and J. Risso, A finite element formulation for nonlinear 3D contact problems. Mecánica Comput. XXVI(16) (2007) 1357–1372. [Google Scholar]
  14. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  15. E. Emmrich and D. Šiška, Evolution equations of second order with nonconvex potential and linear damping: existence via convergence of a full discretization. Technical report, University of Liverpool (2012). [Google Scholar]
  16. L.C. Evans, Partial Differential Equations, 2nd edn. American Mathematical Society (AMS). Providence (1998). [Google Scholar]
  17. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1992). [Google Scholar]
  18. M. Géradin and A. Cardona, Flexible Multibody Dynamics: A Finite Element Approach. John Wiley, Chichester (2001). [Google Scholar]
  19. J.A. Griepentrog, K. Gröger, H.-C. Kaiser and J. Rehberg, Interpolation for function spaces related to mixed boundary value problems. Math. Nachr. 241 (2002) 110–120. [CrossRef] [MathSciNet] [Google Scholar]
  20. B. Gustafsson, High Order Difference Methods for Time Dependent PDE. Springer-Verlag, Berlin (2008). [Google Scholar]
  21. P. Kunkel and V. Mehrmann, Differential-Algebraic Equations: Analysis and Numerical Solution. European Mathematical Society (EMS), Zürich (2006). [Google Scholar]
  22. J.-L. Lions and E. Magenes, Problèmes aux Limites Non Homogènes et Applications. Vol. 1. Travaux et Recherches Mathématiques, No. 17. Dunod, Paris (1968). [Google Scholar]
  23. J.-L. Lions and W.A. Strauss, Some non-linear evolution equations. Bull. Soc. Math. France 93 (1965) 43–96. [MathSciNet] [Google Scholar]
  24. M.K. Lipinski, A posteriori Fehlerschätzer für Sattelpunktsformulierungen nicht-homogener Randwertprobleme. Ph.D thesis, Ruhr Universität Bochum (2004). [Google Scholar]
  25. J. Nečas, Les Méthodes Directes en Théorie des Equations Elliptiques. Masson et Cie, Éditeurs, Paris (1967). [Google Scholar]
  26. L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal. 5 (1960) 286–292. [Google Scholar]
  27. G. Poetsch, J. Evans, R. Meisinger, W. Kortüm, W. Baldauf, A. Veitl and J. Wallaschek, Pantograph/catenary dynamics and control. Vehicle System Dynamics 28 (1997) 159–195. [CrossRef] [Google Scholar]
  28. A.A. Shabana, Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005). [Google Scholar]
  29. B. Simeon, On Lagrange multipliers in flexible multibody dynamics. Comput. Method. Appl. M 195 (2006) 6993–7005. [CrossRef] [Google Scholar]
  30. B. Simeon, Computational flexible multibody dynamics. A differential-algebraic approach. Differential-Algebraic Equations Forum. Springer-Verlag, Berlin (2013). [Google Scholar]
  31. O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements. Springer-Verlag, New York (2008). [Google Scholar]
  32. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner, Stuttgart (1996). [Google Scholar]
  33. J. Wloka, Partial Differential Equations. Cambridge University Press, Cambridge (1987). [Google Scholar]
  34. E. Zeidler, Nonlinear Functional Analysis and its Applications IIa: Linear Monotone Operators. Springer-Verlag, New York (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you