Free Access
Issue
ESAIM: M2AN
Volume 49, Number 1, January-February 2015
Page(s) 257 - 273
DOI https://doi.org/10.1051/m2an/2014029
Published online 16 January 2015
  1. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. ninth dover printing, tenth gpo printing ed. Dover, New York (1964). [Google Scholar]
  2. R.A. Adams,Sobolev spaces. Academic Press, New York, London (1975). [Google Scholar]
  3. W. Arendt, G. Metafune, D. Pallara and S. Romanell, The Laplacian with Wentzell-Robin boundary conditions on spaces of continuous functions. Semigroup Forum 67 (2003) 247–261. [CrossRef] [MathSciNet] [Google Scholar]
  4. W. Bao and H. Han, High-order local artificial boundary conditions for problems in unbounded domains. Comput. Methods Appl. Mech. Engrg. 188 (2000) 455–471. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Bayliss, M. Gunzburger and E. Turkel, Boundary conditions for the numerical solution of elliptic equations in exterior regions. SIAM J. Appl. Math. 42 (1982) 430–451. [Google Scholar]
  6. V. Bonnaillie-Nol, M. Dambrine, F. Hrau and G. Vial, On generalized Ventcel’s type boundary conditions for Laplace operator in a bounded domain. SIAM J. Math. Anal. 42 (2010) 931–945. [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3th eds. Cambridge University Press (2007). [Google Scholar]
  8. Concepts Development Team. Webpage of Numerical C++ Library Concepts 2. http://www.concepts.math.ethz.ch (2014). [Google Scholar]
  9. K.-J. Engel, The Laplacian on Formula with generalized Wentzell boundary conditions. Arch. Math. (Basel) 81 (2003) 548–558. [CrossRef] [MathSciNet] [Google Scholar]
  10. B. Engquist and A. Majda, Absorbing boundary conditions for numerical simulation of waves. Proc. Nat. Acad. Sci. USA 74 (1977) 1765. [Google Scholar]
  11. W. Feller, The parabolic differential equations and the associated semi-groups of transformations. Ann. Math. 55 (1952) 468–519. [CrossRef] [MathSciNet] [Google Scholar]
  12. W. Feller, Generalized second order differential operators and their lateral conditions. Illinois J. Math. 1 (1957) 459–504. [MathSciNet] [Google Scholar]
  13. K. Feng, Finite element method and natural boundary reduction. In Proc. of the International Congress of Mathematicians (1983) 1439–1453. [Google Scholar]
  14. P. Frauenfelder and C. Lage, Concepts – An Object-Oriented Software Package for Partial Differential Equations. Math. Model. Numer. Anal. 36 (2002) 937–951. [Google Scholar]
  15. C. Geuzaine and J.-F. Remacle, Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int. J. Numer. Methods Engrg. 79 (2009) 1309–1331. [Google Scholar]
  16. D. Givoli, Non-reflecting boundary conditions. J. Comput. Phys. 94 (1991) 1–29. [CrossRef] [MathSciNet] [Google Scholar]
  17. D. Givoli, Numerical methods for problems in infinite domains. Elsevier, Amsterdam New York (1992). [Google Scholar]
  18. D. Givoli and J.B. Keller, Special finite elements for use with high-order boundary conditions. Comput. Methods Appl. Mech. Engrg. 119 (1994) 199–213. [CrossRef] [MathSciNet] [Google Scholar]
  19. D. Givoli, I. Patlashenko and J.B. Keller, High-order boundary conditions and finite elements for infinite domains. Comput. Methods Appl. Mech. Engrg. 143 (1997) 13–39. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Han and X. Wu, A survey on artificial boundary method. Sci. China Math. 56 (2013) 2439–2488. [CrossRef] [Google Scholar]
  21. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering. Springer-Verlag (1998). [Google Scholar]
  22. A.L. Koh, A.I. Fernández-Domínguez, D.W. McComb, S.A. Maier and J.K. Yang, High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano letters 11 (2011) 1323–1330. [CrossRef] [PubMed] [Google Scholar]
  23. R. Leis, Initial Boundary Value Problems in Mathematical Physics. B. G. Teubner Gmbh (1986). [Google Scholar]
  24. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). [Google Scholar]
  25. J.-F. Remacle, J. Lambrechts, B. Seny, E. Marchandise, A. Johnen and C. Geuzainet, Blossom-quad: A non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching algorithm. Int. J. Numer. Methods Engrg. 89 (2012) 1102–1119. [CrossRef] [Google Scholar]
  26. S. Sauter and C. Schwab, Boundary element methods. Springer-Verlag, Heidelberg (2011). [Google Scholar]
  27. K. Schmidt, J. Diaz and C. Heier, Non-conforming Galerkin finite element methods for symmetric local absorbing boundary conditions. In preparation. [Google Scholar]
  28. K. Schmidt and P. Kauf, Computation of the band structure of two-dimensional photonic crystals with hp finite elements. Comput. Methods Appl. Mech. Engr. 198 (2009) 1249–1259. [Google Scholar]
  29. A. Venttsel’, On boundary conditions for multidimensional diffusion processes. Theory Probab. Appl. 4 (1959) 164–177. [CrossRef] [Google Scholar]
  30. A.D. Venttsel’, Semigroups of operators that correspond to a generalized differential operator of second order. Dokl. Akad. Nauk SSSR (N.S.) 111 (1956) 269–272. [MathSciNet] [Google Scholar]
  31. M. Wang, C. Engström, K. Schmidt and C. Hafner, On high-order FEM applied to canonical scattering problems in plasmonics. J. Comput. Theor. Nanosci. 8 (2011) 1–9. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you