Free Access
Volume 49, Number 2, March-April 2015
Page(s) 601 - 619
Published online 17 March 2015
  1. R. Abgrall, An extension of Roe’s upwind scheme to algebraic equilibrium real gas models. Comput. Fluids 19 (1991) 171–182. [CrossRef] [Google Scholar]
  2. R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186 (2003) 361–396. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577–616. [CrossRef] [MathSciNet] [Google Scholar]
  4. P. Aursand and T. Flåtten, On the dispersive wave-dynamics of 2 × 2 relaxation systems. J. Hyperbolic Diff. Eq. 9 (2012) 641–659. [CrossRef] [Google Scholar]
  5. M.R. Baer and J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. [Google Scholar]
  6. F. Bouchut, A reduced stability condition for nonlinear relaxation to conservation laws. J. Hyperbolic Diff. Eq. 1 (2004) 149–170. [Google Scholar]
  7. F. Caro, F. Coquel, D. Jamet and S. Kokh, A simple finite-volume method for compressible isothermal two-phase flows simulation. Int. J. Finite 3 (2006). [Google Scholar]
  8. G.-Q. Chen, C.D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787–830. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Dellacherie, Relaxation schemes for the multicomponent Euler system. ESAIM: M2AN 37 (2003) 909–936. [CrossRef] [EDP Sciences] [Google Scholar]
  10. G. Faccanoni, S. Kokh and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 (2012) 1029–1054. [CrossRef] [EDP Sciences] [Google Scholar]
  11. T. Flåtten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379–2407. [CrossRef] [MathSciNet] [Google Scholar]
  12. T. Flåtten, A. Morin and S.T. Munkejord, Wave propagation in multicomponent flow models. SIAM J. Appl. Math. 70 (2010) 2861–2882. [CrossRef] [MathSciNet] [Google Scholar]
  13. T. Flåtten, A. Morin and S.T. Munkejord, On solutions to equilibrium problems for systems of stiffened gases. SIAM J. Appl. Math. 71 (2011) 41–67. [CrossRef] [MathSciNet] [Google Scholar]
  14. P. Helluy and N. Seguin, Relaxation models of phase transition flows. ESAIM: M2AN 40 (2006) 331–352. [CrossRef] [EDP Sciences] [Google Scholar]
  15. H.-O. Kreiss and J. Lorenz, Initial-boundary value problems and the Navier-Stokes equations. Academic Press (1989). [Google Scholar]
  16. T.-P. Liu, Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108 (1987) 153–175. [CrossRef] [MathSciNet] [Google Scholar]
  17. H. Lund, A hierarchy of relaxation models for two-phase flow. SIAM J. Appl. Math. 72 (2012) 1713–1741. [CrossRef] [MathSciNet] [Google Scholar]
  18. H. Lund and P. Aursand, Two-phase flow of CO2 with phase transfer. Energy Procedia 23 (2012) 246–255. [CrossRef] [Google Scholar]
  19. A. Morin, P.K. Aursand, T. Flåtten and S.T. Munkejord, Numerical resolution of CO2 transport dynamics. In Proc. of SIAM Conference on Mathematics for Industry: Challenges and Frontiers (MI09). SIAM, Philadelphia (2009) 108–119. [Google Scholar]
  20. A. Morin and T. Flåtten, A two-fluid four-equation model with instantaneous thermodynamical equilibrium. Submitted. [Google Scholar]
  21. A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202 (2005) 664–698. [Google Scholar]
  22. R. Natalini, Convergence to equilibrium for the relaxation approximation of conservation laws. Commun. Pure Appl. Math. 49 (1996) 795–823. [CrossRef] [Google Scholar]
  23. R. Natalini, Recent results on hyperbolic relaxation problems. Analysis of systems of conservation laws. In vol. 99 of Chapman & Hall/CRC Monogr. Surv. Pure Appl. Math. Chapman & Hall/CRC, Boca Raton, FL (1999) 128–198. [Google Scholar]
  24. M. Pelanti and K.-M. Shyue, A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259 (2014) 331–357. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [Google Scholar]
  26. R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313–350. [CrossRef] [MathSciNet] [Google Scholar]
  27. R. Saurel, F. Petitpas and R.A. Berry, Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228 (2009) 1678–1712. [CrossRef] [Google Scholar]
  28. C.A. Ward and G. Fang, Expression for predicting liquid evaporation flux: Statistical rate theory approach. Phys. Rev. E 59 (1999) 429–440. [CrossRef] [Google Scholar]
  29. W.-A. Yong, Basic aspects of hyperbolic relaxation systems, in Advances in the Theory of Shock Waves. Vol. 47 of Progr. Nonlin. Differ. Eq. Appl. Birkhäuser Boston, Boston (2001) 259–305. [Google Scholar]
  30. A. Zein, M. Hantke and G. Warnecke, Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229 (2010) 2964–2998. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you