Free Access
Issue
ESAIM: M2AN
Volume 49, Number 4, July-August 2015
Page(s) 1219 - 1238
DOI https://doi.org/10.1051/m2an/2015008
Published online 06 July 2015
  1. C. Amrouche and V. Girault, Decomposition of vector spaces and application to the Stokes problem in arbitrary dimensions. Czeschoslovak Math. J. 44 (1994) 109–140. [Google Scholar]
  2. C. Bernardi, Y. Maday and F. Rapetti, Discretisations variationnelles de problèmes aux limites elliptiques. Springer-Verlag, Berlin (2004). [Google Scholar]
  3. J. Blasco and R. Codina, Stabilized finite element method for the transient Navier-Stokes equations based on a pressure gradient projection. Comput. Methods Appl. Mech. Engrg. 182 (2000) 277–300. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Braack and E. Burman, Local projection stabilization for the Oseen problem and its interpretation as a variational multiscale method. SIAM J. Numer. Anal. 43 (2000) 2544–2566. [Google Scholar]
  5. M. Braack, E. Burman, V. John and G. Lube, Stabilized finite element methods for the generalized Oseen problem. Comput. Methods Appl. Mech. Engrg. 196 (2007) 853–866. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3rd edition. Springer-Verlag, Berlin (2008). [Google Scholar]
  7. E. Burman, M.A. Fernández and P. Hansbo, Continuous interior penalty finite element method for Oseen equations. SIAM J. Numer. Anal. 44 (2006) 1248–1274. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Burman and M.A. Fernández, Continuous interior penalty finite element method for the time-dependent Navier−Stokes equations: space discretization and convergence. Numer. Math. 107 (2007) 39–77. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Burman, Interior penalty variational multiscale method for the incompressible Navier-Stokes equations: Monitoring artificial dissipation. Comput. Methods Appl. Mech. Engrg. 196 (2007) 4045–4058. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Codina, Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods. Comput. Methods Appl. Mech. Engrg. 190 (2000) 1579–1599. [Google Scholar]
  11. T. Chacón Rebollo, An analysis technique for stabilized finite element solution of incompressible flows. ESAIM: M2AN 35 (2001) 57–89. [CrossRef] [EDP Sciences] [Google Scholar]
  12. T. Chacón Rebollo and F. Guillén González, An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier-Stokes equations. C. R. Acad. Sci. Paris, Série I 330 (2000) 841–846. [CrossRef] [Google Scholar]
  13. T. Chacón Rebollo, R. Lewandowski and E. Chacón Vera, Analysis of the hydrostatic approximation in oceanography with compression term. ESAIM: M2AN 34 (2000) 525–537. [CrossRef] [EDP Sciences] [Google Scholar]
  14. T. Chacón Rebollo, M. Gómez Mármol and I. Sánchez Muñoz, Numerical solution of the Primitive equations of the ocean by the Orthogonal Sub-Scales VMS method. Appl. Numer. Math. 62 (2012) 342–356. [CrossRef] [Google Scholar]
  15. T. Chacón Rebollo, M. Gómez Mármol, V. Girault, and I. Sánchez Muñoz, A high order term-by-term stabilization solver for incompressible flow problems. IMA J. Numer. Anal. 33-3 (2013) 974–1007. [CrossRef] [Google Scholar]
  16. Ph. Ciarlet, The Finite Element Method for Elliptic Problems. Siamm (2002). [Google Scholar]
  17. S. Ganesan, G. Matthies and L. Tobiska, Local projection stabilization with equal order interpolation applied to the Stokes problem. Math. Comput. 77 (2008) 2039–2060. [CrossRef] [Google Scholar]
  18. V. Girault and J.L. Lions, Two-grid finite-element schemes for the transient Navier-Stokes equations. ESAIM: M2AN 35 (2001) 945–980. [CrossRef] [EDP Sciences] [Google Scholar]
  19. P. Knobloch, A generalization of the local projection stabilization for convection-diffusion-reaction equations. SIAM J. Numer. Anal. 48 (2010) 659–680. [Google Scholar]
  20. J.L. Lions, R. Temman and S. Wang, New formulation of the primitive equations of the atmosphere and applications. Nonlinearity 5 (1992) 237–288. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Matthies, P. Skrypacz and L. Tobiska, A unified convergence analysis for local projection stabilisations applied to the Oseen problem. ESAIM: M2AN 41 (2007) 713–742. [CrossRef] [EDP Sciences] [Google Scholar]
  22. P. Oswald, On a BPX preconditioner for P1 elements. Computing 51 (1993) 125–133. [CrossRef] [MathSciNet] [Google Scholar]
  23. H.G. Roos, M. Stynes and L. Tobiska, Robust numerical methods for singularly perturbed differential equations. 2nd edition. Springer Series Comput. Math. 24 (2008). [Google Scholar]
  24. R. Verfürth, Analysis of some finite element solutions for the Stokes problem. RAIRO Anal. Numer. 18 (1984) 175–182. [Google Scholar]
  25. L.B. Wahlbin, Local behavior in finite element methods. Elsevier Science, North Holland (1991). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you