Free Access
Issue
ESAIM: M2AN
Volume 50, Number 1, January-February 2016
Page(s) 215 - 235
DOI https://doi.org/10.1051/m2an/2015040
Published online 14 January 2016
  1. R.A. Adams, Sobolev Spaces. Academic Press New York (1975). [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Math. Monogr. Oxford University Press (2000). [Google Scholar]
  3. H. Ben Dhia and T. Hadhri, Existence result and discontinuous finite element discretization for a plane stresses hencky problem. Math. Meth. Appl. Sci. 11 (1989) 169–184. [CrossRef] [Google Scholar]
  4. J. Bleyer and P. de Buhan, On the performance of non-conforming finite elements for the upper bound limit analysis of plates. Int. J. Numer. Methods Eng. 94 (2013) 308–330. [CrossRef] [Google Scholar]
  5. M.W. Bræstrup, Yield-line Theory and Limit Analysis of Plates and Slabs. Danmarks Tekniske Højskole, Afdelingen for Bærende Konstruktioner (1971). [Google Scholar]
  6. A. Braides, Gamma-convergence for Beginners. Oxford University Press, USA (2002). [Google Scholar]
  7. S.C. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods. Texts Appl. Math. Springer (2008). [Google Scholar]
  8. A. Capsoni and L. Corradi, Limit analysis of plates- a finite element formulation. Struct. Eng. Mech. 8 (1999) 325–341. [CrossRef] [Google Scholar]
  9. P. Ciarlet and P. Destuynder, Justification of the 2-dimensional linear plate model. J. Mécanique 18 (1979) 315–344. [Google Scholar]
  10. G. Dal Maso, An Introduction to Γ-Convergence. Vol. 8 of Progr. Nonlin. Differ. Eq. Appl. Birkhäuser, Boston, MA (1993). [Google Scholar]
  11. F. Demengel, Problèmes variationnels en plasticité parfaite des plaques. Numer. Funct. Anal. Optim. 6 (1983) 73–119. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Demengel, Fonctions à hessien borné. Ann. Inst. Fourier 34 (1984) 155–190. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Demengel, Compactness theorems for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity. Archive for Rational Mechanics and Anal. 105 (1989) 123–161. [CrossRef] [MathSciNet] [Google Scholar]
  14. F. Demengel and R. Temam, Convex function of a measure and its applications. Indiana Univ. Math. J. 33 (1984) 673–709. [CrossRef] [MathSciNet] [Google Scholar]
  15. E.N. Fox, Limit analysis for plates: the exact solution for a clamped square plate of isotropic homogeneous material obeying the square yield criterion and loaded by uniform pressure. Philos. Trans. Roy. Soc. London. Ser. A, Math. Phys. Sci. 277 (1974) 121–155. [CrossRef] [Google Scholar]
  16. T. Hadhri, Fonction convexe d’une mesure. C.R. Acad. Sci. Paris 301 (1985) 687–690. [Google Scholar]
  17. T. Hadhri, Étude dans HB × BD d’un modèle de plaques élastoplastiques comportant une non-linéarité géométrique. ESAIM: M2AN 19 (1985) 235–283. [CrossRef] [EDP Sciences] [Google Scholar]
  18. T. Hadhri, Présentation et analyse mathématique de quelques modèles pour des structures élastoplastiques homogènes ou hétérogènes. Thèse d’état, Université Pierre et Marie Curie, Paris (1986). [Google Scholar]
  19. T. Hadhri, Prise en compte d’une force linéique de frontière dans un modèle de plaques de Hencky comportant une non-linéarité géométrique. ESAIM: M2AN 22 (1988) 457–468. [CrossRef] [EDP Sciences] [Google Scholar]
  20. P.G. Hodge Jr and T. Belytschko, Numerical methods for the limit analysis of plates. J. Appl. Mech. 35 (1968) 796. [CrossRef] [Google Scholar]
  21. A. Jennings, On the identification of yield-line collapse mechanisms. Eng. Struct. 18 (1996) 332–337. [CrossRef] [Google Scholar]
  22. D. Johnson. Mechanism determination by automated yield-line analysis. Struct. Eng. 72 (1994) 323–323. [Google Scholar]
  23. C.V. Le, M. Gilbert and H. Askes, Limit analysis of plates using the EFG method and second-order cone programming. Int. J. Numer. Methods Eng. 78 (2009) 1532–1552. [CrossRef] [Google Scholar]
  24. C.V. Le, H. Nguyen-Xuan and H. Nguyen-Dang, Upper and lower bound limit analysis of plates using FEM and second-order cone programming. Comput. Struct. 88 (2010) 65–73. [CrossRef] [Google Scholar]
  25. Mosek, The Mosek optimization toolbox for MATLAB manual (2008). [Google Scholar]
  26. J. Munro and A.M.A. Da Fonseca, Yield line method by finite elements and linear programming. Struct. Eng. 56 (1978) 37–44. [Google Scholar]
  27. C. Ortner and D. Praetorius, On the convergence of adaptive nonconforming finite element methods for a class of convex variational problems. SIAM J. Numer. Anal. 49 (2011) 346–367. [CrossRef] [Google Scholar]
  28. W. Prager, An Introduction to Plasticity. Addison-Wesley series in the engineering sciences: Mechanics and thermodynamics. Addison-Wesley Pub. Co. (1959). [Google Scholar]
  29. T. Rockafellar, Convex Analysis. Vol. 224 of Grundlehren der Mathematischen Wissenschaften. Princeton University Press, 2nd edition (1983). [Google Scholar]
  30. M.A. Save, C.E. Massonnet and G. de Saxce, Plastic Limit Analysis of Plates, Shells, and Disks, vol. 43. North Holland, 1997. [Google Scholar]
  31. J.J. Telega, Epi-limit on HB and homogenization of heterogeneous plastic plates. Nonlinear Anal. 25 (1995) 499–529. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Temam, Mathematical Problems in Plasticity. Gauthier-Villars Paris (1985). [Google Scholar]
  33. S. Zhou, Y. Liu and S. Chen, Upper bound limit analysis of plates utilizing the C1 natural element method. Comput. Mech. 50 (2012) 543–561. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you