Free Access
Volume 50, Number 1, January-February 2016
Page(s) 263 - 288
Published online 28 January 2016
  1. C. Ahrens and G. Beylkin, Rotationally invariant quadratures for the sphere. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci. 465 (2009) 3103–3125. [NASA ADS] [CrossRef] [Google Scholar]
  2. C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace’s equation in Rn. J. Math. Pures Appl. 73 (1994) 579–606. [Google Scholar]
  3. N. Arar and T.Z. Boulmezaoud, Eigenfunctions of a weighted Laplace operator in the whole space. J. Math. Anal. Appl. 400 (2013) 161–173. [CrossRef] [Google Scholar]
  4. K. Atkinson and W. Han, Spherical harmonics and approximations on the unit sphere: An introduction. Vol. 2044 of Lect. Notes Math. Springer, Heidelberg (2012). [Google Scholar]
  5. A. Bayliss and E. Turkel, Radiation boundary conditions for wavelike equations. Commun. Pure Appl. Math. 33 (1980) 707–725. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.-P. Bérenger, A perfectly matched layer for absorption of electromagnetics waves. J. Comput. Phys. 114 (1994) 185–200. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  7. J.-P. Bérenger. Perfectly matched layer for the fdtd solution of wave-structure interaction problems. IEEE Trans. Antennas Propag. 44 (1996) 110–117,. [CrossRef] [Google Scholar]
  8. Ch. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques, Vol. 10 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer–Verlag, Paris (1992). [Google Scholar]
  9. P. Bettess, Infinite elements. Int. J. Numer. Methods Engrg. 11 (1977) 53–64. [CrossRef] [Google Scholar]
  10. P. Bettess and O. C. Zienkiewicz. Diffraction and refraction of surface waves using finite and infinite elements. Int. J. Numer. Methods Engrg. 11 (1977) 1271–1290. [CrossRef] [MathSciNet] [Google Scholar]
  11. T.Z. Boulmezaoud. On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces. Math. Methods Appl. Sci. 26 (2003) 633–669. [CrossRef] [MathSciNet] [Google Scholar]
  12. T.Z. Boulmezaoud, On the invariance of weighted Sobolev spaces under Fourier transform. C. R. Math. Acad. Sci. Paris 339 (2004) 861–866. [CrossRef] [MathSciNet] [Google Scholar]
  13. T.Z. Boulmezaoud, Inverted finite elements: a new method for solving elliptic problems in unbounded domains. ESAIM: M2AN 39 (2005) 109–145. [CrossRef] [EDP Sciences] [Google Scholar]
  14. T.Z. Boulmezaoud and K. Kaliche, A new numerical method for the model of solvation in continuum anisotropic dielectrics. In preparation (2015). [Google Scholar]
  15. T.Z. Boulmezaoud and U. Razafison, On the steady Oseen problem in the whole space. Hiroshima Math. J. 35 (2005) 371–401. [MathSciNet] [Google Scholar]
  16. T.Z. Boulmezaoud, S. Mziou and T. Boudjedaa, Numerical approximation of second-order elliptic problems in unbounded domains. J. Sci. Comput. 60 (2014) 295–312. [CrossRef] [Google Scholar]
  17. J.P. Boyd, Orthogonal rational functions on a semi-infinite interval. J. Comput. Phys. 70 (1987) 63–88. [CrossRef] [Google Scholar]
  18. J.P. Boyd, Spectral methods using rational basis functions on an infinite interval. J. Comput. Phys. 69 (1987) 112–142. [CrossRef] [Google Scholar]
  19. C.A. Brebbia, J.C.F. Telles and L.C. Wrobel, Boundary Element Techniques. Springer-Verlag, Berlin (1984). [Google Scholar]
  20. F. Brezzi, C. Johnson and J.-C. Nédélec, On the Coupling of Boundary Integral and Finite Element Methods. In Proc. of the Fourth Symposium on Basic Problems of Numerical Mathematics Plzevn. Charles Univ., Prague (1978) 103–114. [Google Scholar]
  21. D.S. Burnett, A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Amer. 96 (1994) 2798–2816. [CrossRef] [MathSciNet] [Google Scholar]
  22. C. Canuto, S. I. Hariharan and L. Lustman, Spectral methods for exterior elliptic problems. Numer. Math. 46 (1985) 505–520. [CrossRef] [MathSciNet] [Google Scholar]
  23. C. Carstensen, D. Zarrabi and E.P. Stephan, On the h-adaptive coupling of FE and BE for viscoplastic and elastoplastic interface problems. J. Comput. Appl. Math. 75 (1996) 345–363. [CrossRef] [Google Scholar]
  24. J. Céa, Approximation variationnelle des problèmes aux limites. Ann. Inst. Fourier Grenoble 14 (1964) 345–444. [CrossRef] [MathSciNet] [Google Scholar]
  25. Ph.-G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam (1978). [Google Scholar]
  26. D.L. Colton and R. Kressn, Integral equation methods in scattering theory. Pure Appl. Math. John Wiley & Sons Inc., New York (1983). [Google Scholar]
  27. R. Cools, Constructing cubature formulae: the science behind the art. In vol. 6 of Acta Numer. Cambridge Univ. Press, Cambridge (1997) 1–54. [Google Scholar]
  28. M. Costabel and E.P. Stephan, Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal. 27 (1990) 1212–1226. [CrossRef] [MathSciNet] [Google Scholar]
  29. M. Costabel, V.J. Ervin and E.P. Stephan, Symmetric coupling of finite elements and boundary elements for a parabolic-elliptic interface problem. Quart. Appl. Math. 48 (1990) 265–279. [MathSciNet] [Google Scholar]
  30. B. Enquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31 (1977) 629–651. [CrossRef] [MathSciNet] [Google Scholar]
  31. B. Enquist and A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations. Commun. Pure Appl. Math. 32 (1979) 313–357. [CrossRef] [Google Scholar]
  32. D. Funaro, Computational aspects of pseudospectral Laguerre approximations. Appl. Numer. Math. 6 (1990) 447–457. [CrossRef] [Google Scholar]
  33. D. Funaro and O. Kavian, Approximations of some diffusion evolution equations in unbounded domains by Hermite functions. Math. Comput. 57 (1990) 597–619. [CrossRef] [Google Scholar]
  34. K. Gerdes and L. Demkowicz, Solution of 3D-Laplace and Helmholtz equations in exterior domains using hp-infinite elements. Comput. Methods Appl. Mech. Engrg. 137 (1996) 239–273. [CrossRef] [MathSciNet] [Google Scholar]
  35. J. Giroire, Études de quelques problèmes aux limites extérieurs et résolution par équations intégrales. Ph.D. thesis, Université Pierre et Marie Curie, Paris (1987). [Google Scholar]
  36. J. Giroire and J.-C. Nédélec, Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comput. 32 (1978) 973–990. [CrossRef] [MathSciNet] [Google Scholar]
  37. B.-Y. Guo, J. Shen and Z.-Q. Wang, A rational approximation and its applications to differential equations on the half line. J. Sci. Comput. 15 (2000) 117–147. [CrossRef] [Google Scholar]
  38. B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46 (1971) 227–272. [MathSciNet] [Google Scholar]
  39. W.J. Hehre, L. Radom, P.V.R. Schleyer and J.A. Pople, Ab initio molecular orbital theory. Wiley (1986). [Google Scholar]
  40. C. Johnson and J.-C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comput. 35 (1980) 1063–1079. [CrossRef] [MathSciNet] [Google Scholar]
  41. Q.T. Le Gia and H.N. Mhaskar, Localized linear polynomial operators and quadrature formulas on the sphere. SIAM J. Numer. Anal. 47 (2008/09) 440–466. [Google Scholar]
  42. J. Lysmer and R.L. Kuhlemeyer, Finite difference model for infinite media. J. Eng. Mech. EMR 95 (1969) 859–877. [Google Scholar]
  43. Y. Maday, B. Pernaud-Thomas and H. Vandeven, Reappraisal of Laguerre type spectral methods. La Recherche Aerospatiale 6 (1985) 13–35. [Google Scholar]
  44. A.D. McLaren, Optimal numerical integration on a sphere. Math. Comput. 17 (1963) 361–383. [CrossRef] [Google Scholar]
  45. C. Müller, Spherical harmonics. Vol. 17 of Lect. Notes Math. Springer-Verlag, Berlin (1966). [Google Scholar]
  46. C. Müller, Analysis of Spherical Symmetries in Euclidean Spaces. Vol. 129 of Applied Mathematical Sciences. Springer (1998). [Google Scholar]
  47. A. Ralston and Ph. Rabinowitz, A first course in numerical analysis, 2nd edition. Dover Publications, Inc., Mineola, New York (2001). [Google Scholar]
  48. R.T. Seeley, Spherical harmonics. Amer. Math. Monthly 73 (1966) 115–121. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you