Free Access
Volume 50, Number 3, May-June 2016
Special Issue – Polyhedral discretization for PDE
Page(s) 905 - 920
Section Regular articles
Published online 23 May 2016
  1. A. Bendali and K. Lemrabet, Asymptotic analysis of the scattering of a time-harmonic electromagnetic wave by a perfectly conducting metal coated with a thin dielectric shell. Asymptot. Anal. 57 (2008) 199–227. [MathSciNet] [Google Scholar]
  2. L. Bourgeois, N. Chaulet and H. Haddar, Stable reconstruction of generalized impedance boundary conditions. Inverse Probl. 27 (2011). [Google Scholar]
  3. L. Bourgeois, N. Chaulet and H. Haddar, On simultaneous identification of the shape and generalized impedance boundary condition in obstacle scattering. SIAM J. Sci. Comput. 34 (2012). [Google Scholar]
  4. F. Cakoni and R. Kress, Integral equation methods for the inverse obstacle problem with generalized impedance boundary condition. Inverse Probl. 29 (2013) 015005. [CrossRef] [Google Scholar]
  5. M. Cessenat, Mathematical Methods in Electromagnetism: Linear Theory and Applications. World scientific publishing compagny (1996). [Google Scholar]
  6. M. Chamaillard, N. Chaulet and H. Haddar, Analysis of the factorization method for a general class of boundary conditions. J. Inverse Ill-Posed Probl. 22 (2014) 643–670. [CrossRef] [MathSciNet] [Google Scholar]
  7. S. Chun, H. Haddar and J.S. Hesthaven, High-order accurate thin layer approximations for time-domain electromagnetics, PartII: Transmission layers. J. Comput. Appl. Math. 234 (2010) 25787–2608. [Google Scholar]
  8. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory. In vol. 93 of Appl. Math. Sci., 3rd edition. Springer-Verlag (1998). [Google Scholar]
  9. M. Costabel. A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Methods Appl. Sci. (1990) 365–368. [Google Scholar]
  10. B. Delourme, H. Haddar and P. Joly, On the well-posedness, stability and accuracy of an asymptotic model for thin periodic interfaces in electromagnetic scattering problems. Math. Models Methods Appl. Sci. 23 (2013) 2433–2646. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Duruflé, H. Haddar and P. Joly, Higher order generalized impedance boundary conditions in electromagnetic scattering problems. C.R. Phys. 7 (2006) 533–542. [CrossRef] [Google Scholar]
  12. M. Duruflé, V. Péron and C. Poignard, Thin layer models for electromagnetism. Commun. Comput. Phys. 16 (2014) 213–238. [Google Scholar]
  13. H. Haddar and P. Joly, Stability of thin layer approximation of electromagnetic waves scattering by linear and nonlinear coatings. J. Comput. Appl. Math. 143 (2002) 201–236. [CrossRef] [MathSciNet] [Google Scholar]
  14. H. Haddar, P. Joly and H.-M. Nguyen, Generalized impedance boundary conditions for scattering problems from strongly absorbong obstacles: the case of Maxwell’s equations. Math. Models Methods Appl. Sci. 18 (2008) 1787–1827. [CrossRef] [MathSciNet] [Google Scholar]
  15. P. Monk, Finite Elements Methods for Maxwell’s Equations. Calderon Press, Oxford (2003). [Google Scholar]
  16. L. Vernhet, Boundary element solution of a scattering problem involving a generalized impedance boundary condition. Math. Methods Appl. Sci. 22 (1999) 587–603. [CrossRef] [MathSciNet] [Google Scholar]
  17. V. Vogelsang, On the strong unique continuation principle for inequalities of maxwell type. Math. Ann. 289 (1991) 285–295. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you