Free Access
Volume 50, Number 4, July-August 2016
Page(s) 1167 - 1192
Published online 07 July 2016
  1. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577–616. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Allaire, G. Faccanoni and S. Kokh, A strictly hyperbolic equilibrium phase transition model. C. R. Acad. Sci. Paris Ser. I 344 (2007) 135–140. [Google Scholar]
  3. M.R. Baer and J.W. Nunziato, A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials. Int. J. Multiphase Flow 12 (1986) 861–889. [Google Scholar]
  4. K.H. Bendiksen, D. Malnes, R. Moe and S. Nuland, The dynamic two-fluid model OLGA: Theory and application. SPE Prod. Eng. 6 (1991) 171–180. [CrossRef] [Google Scholar]
  5. M. Bernard, S. Dellacherie, G. Faccanoni, B. Grec and Y. Penel, Study of a low Mach nuclear core model for two-phase flows with phase transition I: stiffened gas law. ESAIM: M2AN 48 (2014) 1639–1679. [CrossRef] [EDP Sciences] [Google Scholar]
  6. D. Bestion, The physical closure laws in the CATHARE code. Nucl. Eng. Des. 124 (1990) 229–245. [CrossRef] [Google Scholar]
  7. F. Bouchut, A reduced stability condition for nonlinear relaxation to conservation laws. J. Hyperbol. Differ. Eq. 1 (2004) 149–170. [Google Scholar]
  8. C.-H. Chang and M.-S. Liou, A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme. J. Comput. Phys. 225 (2007) 850–873. [Google Scholar]
  9. G.-Q. Chen, C.D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy. Commun. Pure Appl. Math. 47 (1994) 787–830. [CrossRef] [MathSciNet] [Google Scholar]
  10. F. Coquel, K. El Amine and E. Godlewski, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272–288. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Coquel, T. Gallouët, J.M. Hérard and N. Seguin, Closure laws for a two-fluid two-pressure model. C. R. Acad. Sci. Paris Ser. I 334 (2002) 927–932. [CrossRef] [Google Scholar]
  12. J. Cortes, A. Debussche and I. Toumi, A density perturbation method to study the eigenstructure of two-phase flow equation systems. J. Comput. Phys. 147 (1998) 463–484. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Evje and T. Flåtten, Hybrid Flux-Splitting Schemes for a Common Two-Fluid Model. J. Comput. Phys. 192 (2003) 175–210. [CrossRef] [Google Scholar]
  14. G. Faccanoni, S. Kokh and G. Allaire, Modelling and simulation of liquid-vapor phase transition in compressible flows based on thermodynamical equilibrium. ESAIM: M2AN 46 (2012) 1029–1054. [CrossRef] [EDP Sciences] [Google Scholar]
  15. T. Flåtten and H. Lund, Relaxation two-phase flow models and the subcharacteristic condition. Math. Models Methods Appl. Sci. 21 (2011) 2379-2407. [CrossRef] [MathSciNet] [Google Scholar]
  16. T. Flåtten and A. Morin, On Interface Transfer Terms in Two-Fluid Models. Int. J. Multiphase Flow 45 (2012) 24–29. [CrossRef] [Google Scholar]
  17. T. Flåtten, A. Morin and S.T. Munkejord, Wave propagation in multicomponent flow models. SIAM J. Appl. Math. 70 (2010) 2861–2882. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Gallouët, J.-M. Hérard and N. Seguin, Numerical modeling of two-phase flows using the two-fluid two-pressure approach. Math. Models Methods Appl. Sci. 14 (2004) 663–700. [CrossRef] [MathSciNet] [Google Scholar]
  19. D. Gidaspow, Modeling of two-phase flow. Round table discussion (RT-1-2). Proc. of 5th Int. Heat Transfer Conf. VII (1974) 163. [Google Scholar]
  20. M. Hammer and A. Morin, A method for simulating two-phase pipe flow with real equations of state. Comput. Fluids 100 (2014) 45–58. [CrossRef] [MathSciNet] [Google Scholar]
  21. P. Helluy and H. Mathis, Pressure laws and fast Legendre transform. Math. Models Methods Appl. Sci. 21 (2011) 745–775. [CrossRef] [MathSciNet] [Google Scholar]
  22. P. Helluy and N. Seguin, Relaxation models of phase transition flows. ESAIM: M2AN 40 (2006) 331–352. [CrossRef] [EDP Sciences] [Google Scholar]
  23. K.H. Karlsen, C. Klingenberg and N.H. Risebro, A relaxation system for conservation laws with a discontinuous coefficient. Math. Comput. 73 (2004) 1235–1259. [CrossRef] [Google Scholar]
  24. A. Kumbaro and M. Ndjinga, Influence of interfacial pressure term on the hyperbolicity of a general multifluid model. J. Comput. Multiphase Flows 3 (2011) 177–195. [CrossRef] [Google Scholar]
  25. G. Linga, A hierarchy of non-equilibrium two-phase flow models. Submitted (2015). [Google Scholar]
  26. T.-P. Liu, Hyperbolic conservation laws with relaxation. Commun. Math. Phys. 108 (1987) 153–175. [CrossRef] [MathSciNet] [Google Scholar]
  27. H. Lund, A hierarchy of relaxation models for two-phase flow. SIAM J. Appl. Math. 72 (2012) 1713–1741. [CrossRef] [MathSciNet] [Google Scholar]
  28. H. Lund, Relaxation models for two-phase with applications to CO2 transport. Ph.D. thesis, Norwegian University of Science and Technology (2013). [Google Scholar]
  29. P.J. Martínez Ferrer, T. Flåtten and S.T. Munkejord, On the effect of temperature and velocity relaxation in two-phase flow models. ESAIM: M2AN 46 (2011) 411–442. [CrossRef] [EDP Sciences] [Google Scholar]
  30. A. Morin, T. Flåtten and S.T. Munkejord, A Roe scheme for a compressible six-equation two-fluid model. Int. J. Numer. Meth. Fluids 72 (2012) 478–504. [CrossRef] [Google Scholar]
  31. S.T. Munkejord and M. Hammer, Depressurization of CO2-rich mixtures in pipes: Two-phase flow modelling and comparison with experiments. Int. J. Greenh. Gas Control 37 (2015) 398–411. [CrossRef] [Google Scholar]
  32. S.T. Munkejord, S. Evje and T. Flåtten, A Musta scheme for a nonconservative two-fluid model. SIAM J. Sci. Comput. 31 (2009) 2587–2622. [CrossRef] [MathSciNet] [Google Scholar]
  33. A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202 (2005) 664–698. [Google Scholar]
  34. R. Natalini, Recent results on hyperbolic relaxation problems. Analysis of systems of conservation laws. Monogr. Surv. Pure Appl. Math. Chapman & Hall/CRC (1999) 128–198. [Google Scholar]
  35. H. Paillère, C. Corre and J.R. García Cascales, On the extension of the AUSM+ scheme to compressible two-fluid models. Comput. Fluids 32 (2003) 891–916. [CrossRef] [MathSciNet] [Google Scholar]
  36. L. Pareschi and G. Russo, Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25 (2005) 129–155. [CrossRef] [MathSciNet] [Google Scholar]
  37. M. Pelanti and K.-M. Shyue, A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259 (2014) 331–357. [CrossRef] [MathSciNet] [Google Scholar]
  38. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [Google Scholar]
  39. R. Saurel, F. Petitpas and R. Abgrall, Modelling phase transition in metastable liquids: application to cavitating and flashing flows. J. Fluid Mech. 607 (2008) 313–350. [CrossRef] [MathSciNet] [Google Scholar]
  40. A.L. Schor, M.S. Kazimi and N.E. Todreas, Advances in two-phase flow modeling for LMFBR applications. Nucl. Eng. Des. 82 (1984) 127–155. [CrossRef] [Google Scholar]
  41. U. Setzmann and W. Wagner, A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 MPa. J. Phys. Chem. Ref. Data 20 (1991) 1061–1151. [CrossRef] [Google Scholar]
  42. S. Solem, P. Aursand and T. Flåtten, Wave dynamics of linear hyperbolic relaxation systems. J. Hyperbol. Differ. Eq. 12 (2015) 655–670. [CrossRef] [Google Scholar]
  43. R. Span and W. Wagner, A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25 (1996) 1509–1596. [NASA ADS] [CrossRef] [Google Scholar]
  44. H.B. Stewart and B. Wendroff, Two-phase flow: Models and methods. J. Comput. Phys. 56 (1984) 363–409. [CrossRef] [MathSciNet] [Google Scholar]
  45. J.H. Stuhmiller, The influence of interfacial pressure forces on the character of two-phase flow model equations. Int. J. Multiphase Flow 3 (1977) 551–560. [CrossRef] [Google Scholar]
  46. I. Toumi, An Upwind Numerical Method for Two-Fluid Two-Phase Flow Models. Nucl. Sci. Eng. 123 (1996) 147–168. [Google Scholar]
  47. I. Toumi and A. Kumbaro, An Approximate Linearized Riemann Solver for a Two-Fluid Model. J. Comput. Phys. 124 (1996) 286–300. [CrossRef] [MathSciNet] [Google Scholar]
  48. Q.H. Tran, M. Baudin and F. Coquel, A relaxation method via the Born-Infeld system. Math. Models Methods Appl. Sci. 19 (2009) 1203–1240. [CrossRef] [MathSciNet] [Google Scholar]
  49. WAHA3 Code Manual. JSI Report IJS-DP-8841, Jožef Stefan Insitute, Ljubljana, Slovenia (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you