Free Access
Issue
ESAIM: M2AN
Volume 50, Number 5, September-October 2016
Page(s) 1333 - 1369
DOI https://doi.org/10.1051/m2an/2015085
Published online 14 July 2016
  1. E. Acerbi and N. Fusco, An approximation lemma for W1,p functions, Material instabilities in continuum mechanics (Edinburgh, 1985–1986). Oxford Univ. Press, New York (1988) 1–5. [Google Scholar]
  2. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley-Interscience, New York (2000). [Google Scholar]
  3. C.D. Aliprantis and K.C. Border, Infinite dimensional analysis, A hitchhiker’s guide, 3rd edition. Springer, Berlin (2006). [Google Scholar]
  4. J.-P. Aubin and H. Frankowska, Set-valued analysis, Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA (2009), Reprint of the 1990 edition. [Google Scholar]
  5. E. Bänsch, Local mesh refinement in 2 and 3 dimensions. IMPACT Comput. Sci. Engrg. 3 (1991) 181–191. [CrossRef] [MathSciNet] [Google Scholar]
  6. L. Belenki, L. Berselli, L. Diening and M. Rzŭˇička, On the finite element approximation of p-stokes systems. SIAM J. Numer. Anal. 50 (2012) 373–397. [CrossRef] [MathSciNet] [Google Scholar]
  7. L. Belenki, L. Diening and C. Kreuzer, Quasi-optimality of an adaptive finite element method for the p-Laplacian equation. IMA J. Numer. Anal. 32 (2012) 484–510. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Berrone and E. Süli, Two-sided a posteriori error bounds for incompressible quasi-Newtonian flows. IMA J. Numer. Anal. 28 (2008) 382–421. [CrossRef] [MathSciNet] [Google Scholar]
  9. M.E. Bogovskiĭ, Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248 (1979) 1037–1040. [MathSciNet] [Google Scholar]
  10. D. Breit, L. Diening and M. Fuchs, Solenoidal Lipschitz truncation and applications in fluid mechanics. J. Differ. Eq. 253 (2012) 1910–1942. [CrossRef] [Google Scholar]
  11. D. Breit, L. Diening and S. Schwarzacher, Solenoidal Lipschitz truncation for parabolic PDEs. Math. Models Methods Appl. Sci. 23 (2013) 2671–2700. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Vol. 15 of Springer Series in Computational Mathematics (1991). [Google Scholar]
  13. J.K. Brooks and R.V. Chacon, Continuity and compactness of measures. Adv. Math. 37 (1980) 16–26. [CrossRef] [Google Scholar]
  14. M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On steady flows of incompressible fluids with implicit power-law-like rheology. Adv. Calc. Var. 2 (2009) 109–136. [MathSciNet] [Google Scholar]
  15. M. Bulíček, P. Gwiazda, J. Málek, K.R. Rajagopal and A. Świerczewska-Gwiazda, On flows of fluids described by an implicit constitutive equation characterized by a maximal monotone graph. Mathematical Aspects of Fluid Mechanics, London Mathematical Society Lecture Note Series (No. 402). Cambridge University Press (2012) 23–51. [Google Scholar]
  16. M. Bulíček, P. Gwiazda, J. Málek and A. Świerczewska-Gwiazda, On unsteady flows of implicitly constituted incompressible fluids. SIAM J. Math. Anal. 44 (2012) 2756–2801. [CrossRef] [MathSciNet] [Google Scholar]
  17. L. Diening and M. Rŭžička, Interpolation operators in Orlicz–Sobolev spaces. Numer. Math. 107 (2007) 107–129. [CrossRef] [MathSciNet] [Google Scholar]
  18. L. Diening and C. Kreuzer, Convergence of an adaptive finite element method for the p-Laplacian equation. SIAM J. Numer. Anal. 46 (2008) 614–638. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Diening, J. Málek, and M. Steinhauer, On Lipschitz truncations of Sobolev functions (with variable exponent) and their selected applications. ESAIM: COCV 14 (2008) 211–232. [CrossRef] [EDP Sciences] [Google Scholar]
  20. L. Diening, M. Rŭžička and K. Schumacher, A decomposition technique for John domains. Ann. Acad. Sci. Fenn. Math. 35 (2010) 87–114. [CrossRef] [MathSciNet] [Google Scholar]
  21. L. Diening, C. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. Prpeprint arXiv:1204.2145v3 (2012). [Google Scholar]
  22. L. Diening, C. Kreuzer and E. Süli, Finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. SIAM J. Numer. Anal. 51 (2013) 984–1015. [CrossRef] [MathSciNet] [Google Scholar]
  23. G. Duvaut and J.-L. Lions, Inequalities in mechanics and physics. [Translated from the French by C.W. John. Grundlehren der Mathematischen Wissenschaften, 219.] Springer-Verlag, Berlin (1976). [Google Scholar]
  24. V. Girault and J.-L. Lions, Two-grid finite-element schemes for the steady Navier–Stokes problem in polyhedra. Port. Math. (N.S.) 58 (2001) 25–57. [MathSciNet] [Google Scholar]
  25. V. Girault and L.R. Scott, A quasi-local interpolation operator preserving the discrete divergence. Calcolo 40 (2003) 1–19. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Gwiazda and A. Zatorska-Goldstein, On elliptic and parabolic systems with x-dependent multivalued graphs. Math. Methods Appl. Sci. 30 (2007) 213–236. [CrossRef] [MathSciNet] [Google Scholar]
  27. P. Gwiazda, J. Málek and A. Świerczewska, On flows of an incompressible fluid with discontinuous power-law-like rheology. Comput. Math. Appl. 53 (2007) 531–546. [CrossRef] [MathSciNet] [Google Scholar]
  28. J. Hron, J. Málek, J. Stebel and K. Touška, A novel view of computations of steady flows of Bingham and Herschel–Bulkley fluids using implicit constitutive relations. Proc. of the 26th Nordic Seminar on Computational Mechanics, Oslo, 23–25 October 2013, edited by A. Logg, K.-A. Mardal and A. Massing. Center for Biomedical Computing, Simula Research Laboratory, Oslo (2013) 217–219. [Google Scholar]
  29. I. Kossaczký, A recursive approach to local mesh refinement in two and three dimensions. J. Comput. Appl. Math. 55 (1994) 275–288. [Google Scholar]
  30. C. Kreuzer and E. Süli, Adaptive finite element approximation of steady flows of incompressible fluids with implicit power-law-like rheology. Preprint arXiv:1503.05378 (2015). [Google Scholar]
  31. W. Liu and N. Yan, Quasi-norm local error estimators for p-Laplacian.. SIAM J. Numer. Anal. 39 (2001) 100–127. [CrossRef] [MathSciNet] [Google Scholar]
  32. J. Málek, Mathematical properties of the flows of incompressible fluids with pressure and shear rate dependent viscosities. D.Sc. thesis, Academy of Sciences of the Czech Republic, Prague (2007). [Google Scholar]
  33. J. Málek, Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations. Electron. Trans. Numer. Anal. 31 (2008) 110–125. [MathSciNet] [Google Scholar]
  34. P. Morin, K.G. Siebert, A. Veeser, A basic convergence result for conforming adaptive finite elements. Math. Models Methods Appl. 18 (2008) 707–737. [Google Scholar]
  35. K.R. Rajagopal, On implicit constitutive theories. Appl. Math., Praha 48 (2003) 279–319. [Google Scholar]
  36. K.R. Rajagopal, On implicit constitutive theories for fluids. J. Fluid Mech. 550 (2006) 243–249. [CrossRef] [MathSciNet] [Google Scholar]
  37. K.R. Rajagopal and A.R. Srinivasa, On the thermodynamics of fluids defined by implicit constitutive relations. Z. Angew. Math. Phys. 59 (2008) 715–729. [CrossRef] [MathSciNet] [Google Scholar]
  38. K.G. Siebert, A convergence proof for adaptive finite elements without lower bound. IMA J. Numer. Anal. 31 (2011) 947–970. [Google Scholar]
  39. A. Schmidt and K.G. Siebert, Design of adaptive finite element software. The finite element toolbox ALBERTA. Vol. 42 of Lect. Notes Comput. Sci. Engrg. Springer (2005). [Google Scholar]
  40. R. Stevenson, The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77 (2008) 227–241. [CrossRef] [MathSciNet] [Google Scholar]
  41. R. Temam, Navier–Stokes equations. Theory and numerical analysis. Vol. 2 of Studies in Mathematics and its Applications, 3rd edition. North-Holland, Amsterdam, New York, Oxford (1984). [Google Scholar]
  42. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Adv. Numer. Math. John Wiley, Chichester, UK (1996). [Google Scholar]
  43. R. Verfürth, A posteriori error estimation techniques for finite element methods. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (2013). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you