Free Access
Issue |
ESAIM: M2AN
Volume 50, Number 6, November-December 2016
|
|
---|---|---|
Page(s) | 1917 - 1936 | |
DOI | https://doi.org/10.1051/m2an/2016012 | |
Published online | 08 November 2016 |
- G. Allaire, Shape Optimization the Homogenization Method. Springer (2002). [Google Scholar]
- G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [CrossRef] [Google Scholar]
- S. Amstutz, A semismooth Newton method for topology optimization. Nonlin. Anal. 73 (2010) 1585–1595. [Google Scholar]
- S. Amstutz, Analysis of a level set method for topology optimization. Optim. Methods Softw. 26 (2011) 555–573. [Google Scholar]
- S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216 (2006) 573–588. [CrossRef] [MathSciNet] [Google Scholar]
- H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2011). [Google Scholar]
- M.P. Bendsøe and O. Sigmund, Topology Optimization. Springer-Verlag, Berlin (2003). [Google Scholar]
- L. Blank, M.H. Farshbaf-Shaker, H. Garcke, C. Rupprecht and V. Styles,Multi-material phase field approach to structural topology optimization, in Trends in PDE Constrained Optimization, edited by G. Leugering et al. Vol. 165 of International Series of Numerical Mathematics. Springer International Publishing (2014) 231–246. [Google Scholar]
- C. Clason, K. Ito and K. Kunisch, A convex analysis approach to optimal controls with switching structure for partial differential equations. ESAIM: COCV 22 (2016) 581–609. [CrossRef] [EDP Sciences] [Google Scholar]
- C. Clason and K. Kunisch, Multi-bang control of elliptic systems. Ann. Inst. Henri Poincaré, (C) Anal. Non Linéaire 31 (2014) 1109–1130. [Google Scholar]
- I. Ekeland and R. Témam, Convex Analysis and Variational Problems. Vol. 28 of Classics Appl. Math. SIAM, Philadelphia (1999). [Google Scholar]
- S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. [Google Scholar]
- J. Haslinger, M. Koĉvara, G. Leugering and M. Stingl, Multidisciplinary free material optimization. SIAM J. Appl. Math. 70 (2010) 2709–2728. [CrossRef] [Google Scholar]
- K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications. Vol. 15 of Advances in Design and Control. SIAM, Philadelphia, PA (2008). [Google Scholar]
- K. Ito, K. Kunisch and Z. Li, Level-set function approach to an inverse interface problem. Inverse Problems 17 (2001) 1225. [CrossRef] [MathSciNet] [Google Scholar]
- O.A. Ladyzhenskaya and N. N. Ural’tseva, Linear and Quasilinear Elliptic Equations. Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis. Academic Press, New York (1968). [Google Scholar]
- F. Murat, Contre-exemples pour divers problèmes où le contrôle intervient dans les coefficients. Ann. Mat. Pura Appl. 112 (1977) 49–68. [CrossRef] [MathSciNet] [Google Scholar]
- F. Murat and L. Tartar, H-convergence, in Topics in the mathematical modelling of composite materials. Vol. 31 of Progr. Nonlinear Differential Equations Appl. Birkhäuser, Boston, MA (1997) 21–43. [Google Scholar]
- P. Neittaanmaki, J. Sprekels and D. Tiba, Optimization of Elliptic Systems. Springer Monographs in Mathematics. Springer, New York (2006). [Google Scholar]
- O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics. Springer-Verlag, New York (1984). [Google Scholar]
- W. Schirotzek, Nonsmooth Analysis, Universitext. Springer, Berlin (2007). [Google Scholar]
- J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization. Vol. 16 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (1992). [Google Scholar]
- M. Ulbrich, Semismooth Newton Methods for Variational Inequalities and Constrained Optimization Problems in Function Spaces. Vol. 11 of MOS-SIAM Series on Optimization. SIAM, Philadelphia, PA (2011). [Google Scholar]
- A. Wouk, A Course of Applied Functional Analysis. Wiley-Interscience. John Wiley & Sons, New York (1979). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.