Free Access
Issue
ESAIM: M2AN
Volume 51, Number 1, January-February 2017
Page(s) 225 - 278
DOI https://doi.org/10.1051/m2an/2016020
Published online 02 December 2016
  1. E.J. Balder, Lectures on Young measure theory and its applications in economics. Workshop on Measure Theory and Real Analysis (Italian), Grado (1997). Rend. Istit. Mat. Univ. Trieste 31 (2000) 1–69.
  2. C. Bauzet, On a time-splitting method for a scalar conservation law with a multiplicative stochastic perturbation and numerical experiments. J. Evol. Equ. 14 (2014) 333–356. [CrossRef] [MathSciNet]
  3. C. Bauzet, G. Vallet and P. Wittbold, The Cauchy problem for a conservation law with a multiplicative stochastic perturbation. J. Hyperbolic Differ. Eq. 9 (2012) 661–709. [CrossRef]
  4. C. Bauzet, J. Charrier and T. Gallouët, Convergence of flux-splitting finite volume schemes for hyperbolic scalar conservation laws with a multiplicative stochastic perturbation. Math. Comp. 85 (2016) 2777–2813. [CrossRef] [MathSciNet]
  5. C. Bauzet, J. Charrier and T. Gallouët, Convergence of monotone finite volume schemes for hyperbolic scalar conservation laws with a multiplicative noise. Stoch. Partial Differ. Eq. Anal. Comput. 4 (2016) 150–223.
  6. C. Bauzet, G. Vallet and P. Wittbold, The Dirichlet problem for a conservation law with a multiplicative stochastic perturbation. J. Funct. Anal. 4 (2014) 2503–2545. [CrossRef]
  7. I.H. Biswas and A.K. Majee, Stochastic conservation laws: Weak-in-time formulation and strong entropy condition. J. Funct. Anal. 7 (2014) 2199–2252. [CrossRef]
  8. C. Chainais-Hillairet, Second-order finite-volume schemes for a non-linear hyperbolic equation: error estimate. Math. Methods Appl. Sci. 23 (2000) 467–490. [CrossRef] [MathSciNet]
  9. G.-Q. Chen, Q. Ding and K.H. Karlsen, On nonlinear stochastic balance laws. Arch. Ration. Mech. Anal. 204 (2012) 707–743. [CrossRef] [MathSciNet]
  10. G. Da Prato and J. Zabczyk, Stochastic equations in infinite dimensions. Vol. 44 of Encycl. Math. Appl. Cambridge University Press, Cambridge (1992).
  11. A. Debussche and J. Vovelle, Scalar conservation laws with stochastic forcing. J. Funct. Anal. 259 (2010) 1014–1042. [CrossRef] [MathSciNet]
  12. R. Eymard, T. Gallouët and R. Herbin, Existence and uniqueness of the entropy solution to a nonlinear hyperbolic equation. Chinese Ann. Math. Ser. B 16 (1995) 1–14. A Chinese summary appears in Chinese Ann. Math. Ser. A 16 (1995) 119. [MathSciNet]
  13. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods. Vol. VII of Handb. Numer. Anal. North-Holland, Amsterdam (2000) 713–1020.
  14. J. Feng and D. Nualart, Stochastic scalar conservation laws. J. Funct. Anal. 255 (2008) 313–373. [CrossRef] [MathSciNet]
  15. M. Hofmanová, Bhatnagar-gross-krook approximation to stochastic scalar conservation laws. Ann. Inst. Henri Poincaré Probab. Statist. (2014).
  16. H. Holden and N.H. Risebro, A stochastic approach to conservation laws. In Third International Conference on Hyperbolic Problems. Vols. I, II (Uppsala, 1990). Studentlitteratur, Lund (1991) 575–587.
  17. K. Kobayasi and D. Noboriguchi, A stochastic conservation law with nonhomogeneous Dirichlet boundary conditions. Acta Math. Vietnam. 41 (2016) 607–632. [CrossRef] [MathSciNet]
  18. I. Kröker and C. Rohde, Finite volume schemes for hyperbolic balance laws with multiplicative noise. Appl. Numer. Math. 62 (2012) 441–456. [CrossRef] [MathSciNet]
  19. F. Otto, Initial-boundary value problem for a scalar conservation law. C. R. Acad. Sci. Paris Sér. I Math. 322 (1996) 729–734.
  20. E. Yu. Panov, On measure-valued solutions of the Cauchy problem for a first-order quasilinear equation. Izv. Ross. Akad. Nauk Ser. Mat. 60 (1996) 107–148. [CrossRef] [MathSciNet]
  21. G. Vallet, Stochastic perturbation of nonlinear degenerate parabolic problems. Differ. Integral Eq. 21 (2008) 1055–1082.
  22. J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90 (2002) 563–596. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you