Free Access
Issue
ESAIM: M2AN
Volume 51, Number 1, January-February 2017
Page(s) 321 - 339
DOI https://doi.org/10.1051/m2an/2016045
Published online 23 December 2016
  1. M. Bachmayr, A. Cohen, R. DeVore and G. Migliorati, Sparse polynomial approximation of parametric elliptic PDEs. Part II: Lognormal coefficients. ESAIM: M2AN 51 (2017) 341–363. [CrossRef] [EDP Sciences] [Google Scholar]
  2. J. Beck, F. Nobile, L. Tamellini and R. Tempone, On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods. Math. Model. Methods Appl. Sci. 22 (2012) 1–33. [CrossRef] [Google Scholar]
  3. J. Beck, F. Nobile, L. Tamellini and R. Tempone, Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients. Comput. Math. Appl. 67 (2014) 732–751. [CrossRef] [Google Scholar]
  4. A. Chkifa, A. Cohen, R. DeVore and C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs. ESAIM: M2AN 47 (2013) 253–280. [CrossRef] [EDP Sciences] [Google Scholar]
  5. A. Chkifa, A. Cohen and C. Schwab, Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs. J. Math. Pures Appl. 103 (2015) 400–428. [CrossRef] [Google Scholar]
  6. A. Cohen, Numerical analysis of wavelet methods. Studies in Mathematics and its Applications. Elsevier, Amsterdam (2003). [Google Scholar]
  7. A. Cohen, R. DeVore and C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic PDEs. Anal. Appl. 9 (2011) 11–47. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs. Acta Numerica 24 (2015) 1–159. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. DeVore, Nonlinear Approximation. Acta Numerica 7 (1998) 51–150. [CrossRef] [Google Scholar]
  10. R.G. Ghanem and P.D. Spanos, Spectral techniques for stochastic finite elements. Arch. Comput. Methods Eng. 4 (1997) 63–100. [CrossRef] [Google Scholar]
  11. R.G. Ghanem and P.D. Spanos, Stochastic Finite Elements: A Spectral Approach, 2nd edition. Dover (2007). [Google Scholar]
  12. C.J. Gittelson, An adaptive stochastic Galerkin method for random elliptic operators. Math. Comput. 82 (2013) 1515–1541. [CrossRef] [Google Scholar]
  13. O. Knio and O. Le Maitre, Spectral Methods for Uncertainty Quantication: With Applications to Computational Fluid Dynamics. Springer (2010). [Google Scholar]
  14. C. Schwab and R. Stevenson, Space-time adaptive wavelet methods for parabolic evolution equations. Math. Comput. 78 (2009) 1293–1318. [CrossRef] [Google Scholar]
  15. H. Tran, C. Webster and G. Zhang, Analysis of quasi-optimal polynomial approximations for parametric PDEs with deterministic and stochastic coefficients. Preprint arXiv:1508.01821 (2015). [Google Scholar]
  16. D. Xiu, Numerical methods for stochastic computations: a spectral method approach. Princeton University Press (2010). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you