Free Access
Volume 51, Number 2, March-April 2017
Page(s) 427 - 442
Published online 27 January 2017
  1. A.F. Bennett and P.E. Kloeden, The dissipative quasigeostrophic equations. Mathematika 28 (1981) 265–285. [CrossRef] [MathSciNet] [Google Scholar]
  2. A.J. Bourgeois and J.T. Beale, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and ocean. SIAM J. Math. Anal. 25 (1994) 1023–1068. [CrossRef] [MathSciNet] [Google Scholar]
  3. F.J. Bretherton and M.J. Karweit, Mid-ocean mesoscale modeling. In Numerical Models of Ocean Circulation. Ocean Affairs Board, National Research Council, National Academy of Sciences, Washington, DC (1975) 237–249. [Google Scholar]
  4. J.G. Charney, Geostrophic turbulence. J. Atmos. Sci. 28 (1971) 1087–1095. [Google Scholar]
  5. F. Charve, Convergence of weak solutions for the primitive system of the quasigeostrophic equations. Asymptot. Anal. 42 (2005) 173–209. [MathSciNet] [Google Scholar]
  6. A. Colin de Verdière and R. Schopp, Flows in a rotating spherical shell: the equatorial case. J. Fluid Mech. 276 (1994) 233–260. [Google Scholar]
  7. B. Cushman-Roisin, Introduction to Geophysical Fluid Dynamics. Prentice Hall (1994). [Google Scholar]
  8. P.J. Dellar, Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a sphere. J. Fluid Mech. 674 (2011) 174–195. [Google Scholar]
  9. C. Eckart, Hydrodynamics of oceans and atmospheres. Pergamon Press, New York (1960). [Google Scholar]
  10. P.F. Embid and A.J. Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity Commun. Partial Differ. Eq. 21 (1996) 619–658. [CrossRef] [Google Scholar]
  11. P.F. Embid and A.J. Majda, Low Froude number limiting dynamics for stably stratified flow with small or finite Rossby numbers Geophys. Astrophys. Fluid Dyn. 87 (1998) 1–30. [CrossRef] [MathSciNet] [Google Scholar]
  12. T. Gerkema, J.T.F. Zimmerman, L.R.M. Maas, H. van Haren, Geophysical and astrophysical fluid dynamics beyond the traditional approximation. Rev. Geophys. 46 (2008) 05. [Google Scholar]
  13. E. Grenier and N. Masmoudi, Ekman layers of rotating fluids, the case of well prepared initial data. Commun. Partial Differ. Eq. 22 (1997) 953–975. [CrossRef] [Google Scholar]
  14. K. Julien, E. Knobloch, R. Milliff and J. Werne, Generalized quasi-geostrophy for spatially anisotropic rotationally constrained flows. J. Fluid Mech. 555 (2006) 233–274. [Google Scholar]
  15. C. Lucas, M. Petcu and A. Rousseau, Quasi-hydrostatic primitive equations for ocean global circulation models. Chinese Ann. Math. B 31 (2010) 1–20. [CrossRef] [Google Scholar]
  16. C. Lucas and A. Rousseau, New developments and cosine effect in the viscous Shallow-Water and quasi-geostrophic equations. SIAM Multiscale Model. Simul. 7 (2008) 796–813. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.C. McWilliams, A note on a consistent quasigeostrophic model in a multiply connected domain. Dynamics of Atmospheres and Oceans 1 (1977) 427–441. [CrossRef] [Google Scholar]
  18. N. Masmoudi, Ekman layers of rotating fluids: The case of general initial data. Commun. Pure Appl. Math. 53 (2000) 432–483. [Google Scholar]
  19. L. Perelman J. Marshall, C. Hill and A. Adcroft, Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. J. Geophys. Res. 102 (1997) 5733–5752. [Google Scholar]
  20. N.A. Phillips, The equations of motion for a shallow rotating atmosphere and the “traditional approximation”. J. Atmospheric Sci. 23 (1966) 626–628. [NASA ADS] [CrossRef] [Google Scholar]
  21. N.A. Phillips, Reply (to George Veronis). J. Atmospheric Sci. 25 (1968) 1155–1157. [NASA ADS] [CrossRef] [Google Scholar]
  22. W.H. Raymond, Equatorial Meridional Flows: Rotationally Induced Circulations. Pure Appl. Geophys. 157 (2000) 1767–1779. [Google Scholar]
  23. I.P. Semenova and L.N. Slezkin, Dynamically equilibrium shape of intrusive vortex formations in the ocean. Fluid Dynamics 38 (2003) 663–669. [CrossRef] [MathSciNet] [Google Scholar]
  24. V.A. Sheremet, Laboratory experiments with tilted convective plumes on a centrifuge: a finite angle between the buoyancy force and the axis of rotation. J. Fluid Mech. 506 (2004) 217–244. [Google Scholar]
  25. F. Straneo, M. Kawase and S.C. Riser, Idealized models of slantwise convection in a baroclinic flow. J. Phys. Oceanogr. 32 (2002) 558–572. [Google Scholar]
  26. G. Veronis, Comments on Phillips’ proposed simplification of the equations of motion for a shallow rotating atmosphere. J. Atmospheric Sci. 25 (1968) 1154–1155. [CrossRef] [Google Scholar]
  27. G. Veronis, Large scale ocean circulation. Adv. Appl. Mech. 13 (1973) 1–92. [CrossRef] [Google Scholar]
  28. R.K. Wangsness, Comments on the equations of motion for a shallow rotating atmosphere and the ‘traditionnal approximation’. J. Atmospheric Sci. 27 (1970) 504–506. [CrossRef] [Google Scholar]
  29. A.A. White and R.A. Bromley, Dynamically consistent quasi-hydrostatic equations for global models with a complete representation of the Coriolis force. Quarterly J. Roy. Meteorol. Soc. 121 (1995) 399–418. [NASA ADS] [CrossRef] [Google Scholar]
  30. A.A. White, B.J. Hoskins, I. Roulstone and A. Staniforth, Consistent approximate models of the global atmosphere: shallow, deep, hydrostatic, quasi-hydrostatic and non-hydrostatic. Quarterly J. Roy. Meteorol. Soc. 131 (2005) 2081–2107. [Google Scholar]
  31. A. Wirth and B. Barnier, Tilted convective plumes in numerical experiments. Ocean Model. 12 (2006) 101–111. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you