Free Access
Volume 52, Number 1, January–February 2018
Page(s) 123 - 145
Published online 04 May 2018
  1. V. Baronian, L. Bourgeois and A. Recoquillay, Imaging an acoustic waveguide from surface data in the time domain. Wave Motion 66 (2016) 68–87. [Google Scholar]
  2. E. Bécache, L. Bourgeois, L. Franceschini and J. Dardé, Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: the 1D case. Inverse Probl. Imaging 9 (2015) 971–1002. [CrossRef] [Google Scholar]
  3. F.B. Belgacem, Why is the Cauchy problem severely ill-posed? Inverse Probl. 23 (2007) 823–836. [Google Scholar]
  4. L. Bourgeois, A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace’s equation. Inverse Probl. 21 (2005) 1087–1104. [Google Scholar]
  5. L. Bourgeois and J. Dardé, A quasi-reversibility approach to solve the inverse obstacle problem. Inverse Probl. Imaging 4 (2010) 351–377. [CrossRef] [Google Scholar]
  6. L. Bourgeois and J. Dardé, The “exterior approach” to solve the inverse obstacle problem for the Stokes system. Inverse Probl. Imaging 8 (2014) 23–51. [CrossRef] [Google Scholar]
  7. L. Bourgeois and J. Dardé, The “exterior approach” applied to the inverse obstacle problem for the heat equation. SIAM J. Numer. Anal. 55 (2017) 1820–1842. [Google Scholar]
  8. L. Bourgeois and E. Lunéville, The linear sampling method in a waveguide: a modal formulation. Inverse Probl. 24 (2008) 015018. [Google Scholar]
  9. L. Bourgeois, C. Chambeyron and S. Kusiak, Locating an obstacle in a 3d finite depth ocean using the convex scattering support. Special Issue: The Seventh International Conference on Mathematical and Numerical Aspects of Waves (WAVES05). J. Comput. Appl. Math. 204 (2007) 387–399. [Google Scholar]
  10. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Vol. 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York (1991). [CrossRef] [Google Scholar]
  11. M. Burger and S. J. Osher, A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16 (2005) 263–301. [Google Scholar]
  12. E. Burman, Stabilized finite element methods for nonsymmetric, noncoercive, and ill-posed problems. Part I: Elliptic equations. SIAM J. Sci. Comput. 35 (2013) A2752–A2780. [Google Scholar]
  13. E. Burman, The elliptic Cauchy problem revisited: control of boundary data in natural norms. C. R. Math. Acad. Sci. Paris 355 (2017) 479–484. [CrossRef] [Google Scholar]
  14. E. Burman, A stabilized nonconforming finite element method for the elliptic Cauchy problem. Math. Comp. 86 (2017) 75–96. [CrossRef] [Google Scholar]
  15. A. Charalambopoulos, D. Gintides, K. Kiriaki and A. Kirsch, The factorization method for an acoustic wave guide, in Mathematical Methods in Scattering Theory and Biomedical Engineering. World Sci. Publ., Hackensack, NJ (2006) 120–127. [CrossRef] [Google Scholar]
  16. N. Cîndea and A. Münch, Inverse problems for linear hyperbolic equations using mixed formulations. Inverse Probl. 31 (2015) 075001. [Google Scholar]
  17. C. Clason and M. V. Klibanov, The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium. SIAM J. Sci. Comput. 30 (2007/08) 1–23. [Google Scholar]
  18. J. Dardé, Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems. Inverse Probl. Imaging 10 (2016) 379–407. [CrossRef] [Google Scholar]
  19. J. Dardé, A. Hannukainen and N. Hyvönen, An Hdiv-based mixed quasi-reversibility method for solving elliptic Cauchy problems. SIAM J. Numer. Anal. 51 (2013) 2123–2148. [Google Scholar]
  20. A. Ern and J.-L. Guermond, in Theory and Practice of Finite Elements. Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [CrossRef] [Google Scholar]
  21. A. Henrot and M. Pierre, in Variation et optimisation de formes: une analyse géométrique. [A geometric analysis]. Vol. 48 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin (2005). [Google Scholar]
  22. V. Isakov, in Inverse Problems for Partial Differential Equations. Vol. 127 of Applied Mathematical Sciences, second edn. Springer, New York (2006). [Google Scholar]
  23. K. Ito and B. Jin, Inverse Problems: Tikhonov Theory and Algorithms. Vol. 22 of Series on Applied Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2015). [Google Scholar]
  24. A. Kirsch, in An Introduction to the Mathematical Theory of Inverse Problems. Vol. 120 Applied Mathematical Sciences. Springer-Verlag, New York (1996). [CrossRef] [Google Scholar]
  25. M.V. Klibanov and F. Santosa, A computational quasi-reversibility method for Cauchy problems for Laplace’s equation. SIAM J. Appl. Math. 51 (1991) 1653–1675. [Google Scholar]
  26. R. Lattès and J.-L. Lions, Méthode de quasi-réversibilité et applications, in Travaux et Recherches Mathématiques. No. 15, Dunod, Paris (1967). [Google Scholar]
  27. K. Liu, Y. Xu and J. Zou, Imaging wave-penetrable objects in a finite depth ocean. Appl. Math. Comput. 235 (2014) 364–376. [Google Scholar]
  28. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
  29. P. Monk and V. Selgas, An inverse acoustic waveguide problem in the time domain. Inverse Probl. 32 (2016) 055001. [Google Scholar]
  30. P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering. Proc. Am. Math. Soc. 132 (2004) 1351–1354. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you