Free Access
Issue
ESAIM: M2AN
Volume 52, Number 3, May–June 2018
Page(s) 1173 - 1193
DOI https://doi.org/10.1051/m2an/2018013
Published online 14 September 2018
  1. G. Alessandrini, An identification problem for an elliptic equation in two variables. Ann. Mat. Pura Appl. 145 (1986) 265–296. [CrossRef] [Google Scholar]
  2. G. Alessandrini and V. Nesi, Univalent σharmonic mappings. Arch. Ration. Mech. Anal. 158 (2001) 155–171. [Google Scholar]
  3. A. Ancona, Some results and examples about the behavior of harmonic functions and Green’s functions with respect to second order elliptic operators. Nagoya Math. J. 165 (2002) 123–158. [MathSciNet] [Google Scholar]
  4. F. Bongiorno and V. Valente, A method of characteristics for solving an underground water maps problem. Vol. 116. I.A.C. Publications, Italy (1977). [Google Scholar]
  5. M. Briane and G.W. Milton, Homogenization of the three-dimensional Hall effect and change of sign of the Hall coefficient. Arch. Ration. Mech. Anal. 193 (2009) 715–736. [Google Scholar]
  6. M. Briane, G.W. Milton and V. Nesi, Change of sign of the corrector’s determinant for homogenization in three-dimensional conductivity. Arch. Ration. Mech. Anal. 173 (2004) 133–150. [Google Scholar]
  7. M. Briane, G.W. Milton and A. Treibergs, Which electric fields are realizable in conducting materials? ESAIM: M2AN 48 (2014) 307–323. [CrossRef] [EDP Sciences] [Google Scholar]
  8. P.G. Ciarlet, The finite element method for elliptic problems. In Vol. 40 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2002). [Google Scholar]
  9. R.J. DiPerna and P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. [Google Scholar]
  10. A. Farcas, L. Elliott, D.B. Ingham and D. Lesnic, An inverse dual reciprocity method for hydraulic conductivity identification in steady groundwater flow. Adv. Water Resour. 27 (2004) 223–235. [Google Scholar]
  11. M.W. Hirsch, S. Smale and R.L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, second edition In Vol. 40 of Pure and Applied Mathematics. Elsevier Academic Press, Amsterdam (2004). [Google Scholar]
  12. C. Kern, M. Kadic and M. Wegener, Experimental evidence for sign reversal of the hall coefficient in three-dimensional metamaterials. Phys. Rev. Lett. 118 (2017) 016601. [CrossRef] [PubMed] [Google Scholar]
  13. I. Knowles, Parameter identification for elliptic problems. J. Comput. Appl. Math. 131 (2001) 175–194. [Google Scholar]
  14. J.L. Miller, Semiconductor metamaterial fools the Hall effect. Phys. Today 70 (2017) 21–23. [Google Scholar]
  15. M. Notomi, Materials science: chain mail reverses the Hall effect. Nature 544 (2017). [Google Scholar]
  16. G.R. Richter, An inverse problem for the steady state diffusion equation. SIAM J. Appl. Math. 41 (1981) 210–221. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you