Free Access
Issue
ESAIM: M2AN
Volume 52, Number 5, September–October 2018
Page(s) 2003 - 2035
DOI https://doi.org/10.1051/m2an/2018011
Published online 14 December 2018
  1. I. Babuska and J. Osborn, Eigenvalue problems, in Vol. II of Handbook of Numerical Analysis, edited by P.G. Ciarlet and J.-L. Lions. North Holland (1991) 641–787. [Google Scholar]
  2. F. Ben Belgacem and S. Brenner, Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems. Electron. Trans. Numer. Anal. 12 (2001) 134–148. [Google Scholar]
  3. A. Bermudez, P. Gamallo, M.R. Nogueiras and R. Rodriguez, Approximation of a structural acoustic vibration problem by hexahedral finite elements. IMA J. Numer. Anal. 26 (2006) 391–421. [Google Scholar]
  4. D. Boffi, Finite element approximation of eigenvalue problems. Acta Numer. 19 (2010) 1–120. [Google Scholar]
  5. D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues for mixed formulations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. Ser. 4 25 (1997) 131–154. [Google Scholar]
  6. D. Boffi, F. Brezzi and L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69 (2000) 121–140. [Google Scholar]
  7. D. Boffi, F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods and Applications. Springer-Verlag (2013). [Google Scholar]
  8. D. Boffi, D. Gallistl, F. Gardini and L. Gastaldi, Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form. Math. Comput. 86 (2017) 2213–2237. [Google Scholar]
  9. A. Bonito, J.-L. Guermond and F. Luddens, Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains. J. Math. Anal. Appl. 408 (2013) 498–512. [Google Scholar]
  10. D. Braess and R. Verfuerth, A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431–2444. [Google Scholar]
  11. S.C. Brenner, A multigrid algorithm for the lowest-order Raviart-Thomas mixed trangular finite element method. SIAM J. Numer. Anal. 29 (1992) 647–678. [Google Scholar]
  12. J. Bussac and P. Reuss, Traité de neutronique. Hermann (1985). [Google Scholar]
  13. P. Ciarlet Jr. E. Jamelot and F.D. Kpadonou, Domain decomposition methods for the diffusion equation with low-regularity solution. Comput. Math. Appl. 74 (2017) 2369–2384. [Google Scholar]
  14. M. Costabel, M. Dauge and S. Nicaise, Singularities of maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649. [CrossRef] [EDP Sciences] [Google Scholar]
  15. M. Dauge, Benchmark Computations for Maxwell Equations. Available at: https://perso.univ-rennes1.fr/monique.dauge/core/ index.html (2018). [Google Scholar]
  16. J.J. Duderstadt and L.J. Hamilton, Nuclear Reactor Analysis. John Wiley & Sons, Inc. (1976). [Google Scholar]
  17. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer-Verlag (2004). [Google Scholar]
  18. R.S. Falkand J.E. Osborn, Error estimates for mixed methods. RAIRO Anal. Numer. 14 (1980) 249–277. [Google Scholar]
  19. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957–991. [Google Scholar]
  20. T.-P. Fries and T. Belytschko, The extended/generalized finite element method: an overview of the method and its applications. Int. J. Numer. Methods Eng. 84 (2010) 253–304. [Google Scholar]
  21. L. Giret, Non-conforming Domain Decomposition for the Multigroup Neutron SPN Equations. Ph.D. thesis, EDMH, Université Paris-Saclay (2018). [Google Scholar]
  22. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985). [Google Scholar]
  23. E. Jamelot and P. Ciarlet Jr. Fast non-overlapping Schwarz domain decomposition methods for solving the neutron diffusion equation. J. Comput. Phys. 241 (2013) 445–463. [Google Scholar]
  24. E. Jamelot, A.-M. Baudron and J.-J. Lautard, Domain decomposition for the SPN solver MINOS. Transp. Theory Stat. Phys. 41 (2012) 495–512. [Google Scholar]
  25. E. Jamelot Jr. P. Ciarlet, A.-M. Baudron and J.-J. Lautard, Domain decomposition for the neutron SPN equations, in 21st International Domain Decomposition Conference. Vol. 98 of Lecture Notes in Computational Science and Engineering (2014) 677–685. [Google Scholar]
  26. J.-C. Nédélec, Mixed finite elements in ℝ3. Numer. Math. 35 (1980) 315–341. [Google Scholar]
  27. J.E. Osborn, Spectral approximation for compact operators. Math. Comput. 29 (1975) 712–725. [Google Scholar]
  28. P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods. Vol. 606 of Lecture Notes in Mathematics. Springer (1977) 292–315. [Google Scholar]
  29. A. Sargeni, K.W. Burn and G.B. Bruna, Coupling effects in large reactor cores: the impact of heavy and conventional reflectors on power distribution perturbations, in PHYSOR 2014, Kyoto, Japan, Sept 28–Oct 3, 2014 (2014). [Google Scholar]
  30. D. Schneider, F. Dolci, F. Gabriel et al., APOLLO3®: CEA/DEN deterministic multi-purpose code for reactor physics analysis, in PHYSOR 2016, Sun Valley ID, USA, May 1–5, 2016 (2016). [Google Scholar]
  31. O. Steinbach, Numerical Approximation Methods for Elliptic Boundary Value Problems. Springer, New York (2008). [Google Scholar]
  32. M.F. Wheeler and I. Yotov, A posteriori error estimates for the mortar mixed finite element method. SIAM J. Numer. Anal. 43 (2005) 1021–1042. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you