Free Access
Volume 53, Number 1, January–February 2019
Page(s) 219 - 248
Published online 10 April 2019
  1. C.V. Ananth and D.G. Kleinbaum, Regression models for ordinal responses: a review of methods and applications, Int. J. Epidemiol. 26 (1997) 1323–1333. [CrossRef] [PubMed] [Google Scholar]
  2. T.W. Anderson and I. Olkin, Maximum-likelihood estimation of the parameters of a multivariate normal distribution, Linear Algebra Appl. 70 (1985) 147–171. [CrossRef] [Google Scholar]
  3. M. Barrault, Y. Maday, N.-C. Nguyen and A.T. Patera, An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, C.R. Math. 339 (2004) 667–672. [Google Scholar]
  4. M. Bergmann, Optimisation aérodynamique par réduction de modèle POD et contrôle optimal: application au sillage laminaire d’un cylindre circulaire, Ph.D. thesis, Vandoeuvre-les-Nancy, INPL, (2004). [Google Scholar]
  5. C. Boutsidis, P. Drineas, P. Kambadur, E.-M. Kontopoulou and A. Zouzias, A randomized algorithm for approximating the log determinant of a symmetric positive definite matrix, Linear Algebra Appl. 533 (2017) 95–117. [CrossRef] [Google Scholar]
  6. A. Buffa, Y. Maday, A.T. Patera, C., Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis method, ESAIM: M2AN 46 (2012) 595–603. [CrossRef] [EDP Sciences] [Google Scholar]
  7. F. Casenave, A. Ern and T. Lelièvre, A nonintrusive reduced basis method applied to aeroacoustic simulations, Adv. Comput. Math. 41 (2015) 961–986. [CrossRef] [Google Scholar]
  8. F. Casenave, A. Ern and T. Lelièvre, Variants of the Empirical Interpolation Method: Symmetric formulation, choice of norms and rectangular extension, Appl. Math. Lett. 56 (2016) 23–28. [CrossRef] [Google Scholar]
  9. R. Chakir, P. Joly, Y. Maday and P. Parnaudeau, A Non intrusive reduced basis method: application to computational fluid dynamics, In: 2nd ECCOMAS Young Investigators Conference (YIC 2013), Bordeaux, France (2013). [Google Scholar]
  10. A. Chatterjee, An introduction to the proper orthogonal decomposition, Curr. Sci. 78 (2000) 808–817. [Google Scholar]
  11. S. Chaturantabut and D.C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput. 32 (2010) 2737–2764. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Chevreuil and A. Nouy, Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics, Int. J. Numer. Methods Eng. 89 (2012) 241–268. [CrossRef] [Google Scholar]
  13. F. Chinesta, A. Ammar, A. Leygue and R. Keunings, An overview of the Proper Generalized Decomposition with applications in computational rheology. XVIth International Workshop on Numerical Methods for Non-Newtonian Flows, J. Non-Newtonian Fluid Mech. 166 (2011) 578–592. [CrossRef] [Google Scholar]
  14. F. Chinesta, R. Keunings and A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer, SpringerBriefs in Applied Sciences and Technology. Springer International Publishing, New York, 2013. [Google Scholar]
  15. F. Chinesta, P. Ladeveze and C. Elias, A short review on model order reduction based on proper generalized decomposition, Arch. Comput. Methods Eng. 18 (2011) 395–404. [Google Scholar]
  16. A. Dasgupta, Y.V. Sun, I.R. König, J.E. Bailey-Wilson and J.D. Malley, Brief review of regression-based and machine learning methods in genetic epidemiology: the genetic analysis workshop 17 experience, Genet. Epidemiol. 35 (2011) S5–S11. [CrossRef] [PubMed] [Google Scholar]
  17. D.J. Knezevic, N.C. Nguyen, A.T. Patera, Reduced basis approximation and a posteriori error estimation for the parametrized unsteady Boussinesq equations, Math. Models Methods Appl. Sci. 21 (2011) 1415–1442. [CrossRef] [Google Scholar]
  18. G. Luo, A review of automatic selection methods for machine learning algorithms and hyper-parameter values, Network Model. Anal. Health Inf. Bioinf. 5 (2016) 18. [CrossRef] [Google Scholar]
  19. L. Machiels, Y. Maday, I.B. Oliveira, A.T. Patera and D.V. Rovas, Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems, C. R. Acad. Sci. Paris Ser. I 331 (2005) 153–158. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. Machiels, Y. Maday, A.T. PateraC. Prud’homme, D.V. Rovas, G. Turinici and K. Veroy, Reliable real-time solution of parametrized partial differential equations: reduced-basis output bound methods, CJ Fluids Eng. 124 (2002) 70–80. [CrossRef] [Google Scholar]
  21. Y. Maday, O. Mula and G. Turinici, Convergence analysis of the Generalized Empirical Interpolation Method, SIAM J. Numer. Anal. 54 (2016) 1713–1731. [CrossRef] [Google Scholar]
  22. Y. Maday, N.-C. Nguyen, A.T. Patera and S.H. Pau, A general multipurpose interpolation procedure: the magic points, Commun. Pure Appl, Anal. 8 (2009) 383–404. [Google Scholar]
  23. R.J. Martin, Approximations to the determinant term in Gaussian maximum likelihood estimation of some spatial models, Commun. Stat. Theory Methods 22 (1992) 189–205. [CrossRef] [Google Scholar]
  24. P. Meer, D. Mintz, A. Rosenfeld and D.Y. Kim, Robust regression methods for computer vision: a review, Int. J. Comput. Vision 6 (1991) 59–70. [CrossRef] [Google Scholar]
  25. A.T. Patera, C. Prud’homme, D.V. Rovas and K. Veroy, A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, Orlando, Florida, USA, (2003). [Google Scholar]
  26. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830. [Google Scholar]
  27. V. Roshan Joseph, E. Gul and S. Ba, Maximum projection designs for computer experiments, Biometrika 102 (2015) 371–380. [CrossRef] [Google Scholar]
  28. S. Sen, Reduced-basis approximation and a posteriori error estimation for many-parameter heat conduction problems, Numer. Heat Transfer Part B: Fundam. 54 (2008) 369–389. [Google Scholar]
  29. S. Sen, K. Veroy, D.B.P. Huynh, S. Deparis, N.C. Nguyen and A.T. Patera, ``Natural norm’’ a posteriori error estimators for reduced basis approximations, J. Comput. Phys. 217 (2006) 37–62. [CrossRef] [MathSciNet] [Google Scholar]
  30. L. Sirovich, Turbulence and the dynamics of coherent structures, parts I, II and III, Q. Appl. Math. XLV (1987) 561–590. [Google Scholar]
  31. I. Uysal and H.A. Güvenir, An overview of regression techniques for knowledge discovery, Knowl. Eng. Rev. 14 (1999) 319–340. [CrossRef] [Google Scholar]
  32. K. Veroy and A.T. Patera, Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds, Int. J. Numer. Methods Fluids 47 (2005) 773–788. [CrossRef] [MathSciNet] [Google Scholar]
  33. K. Veroy, C. Prud’homme and A.T. Patera, Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds, C.R. Math. 337 (2003) 619–624. [Google Scholar]
  34. D. Xiao, Z. Lin, F. Fang, C.C. Pain, I.M. Navon, P. Salinas and A. Muggeridge, Non-intrusive reduced-order modeling for multiphase porous media flows using Smolyak sparse grids, Int. J. Numer. Methods Fluids 83 (2017) 205–219. [CrossRef] [Google Scholar]
  35. M. Yano, A space-time Petrov-Galerkin certified reduced basis method: Application to the Boussinesq equations, SIAM J. Sci. Comput. 36 (2014) A232–A266. [CrossRef] [Google Scholar]
  36. O. Zahm and A. Nouy, Interpolation of inverse operators for preconditioning parameter-dependent equations, SIAM J. Sci. Comput. 38 (2016) A1044–A1074. [CrossRef] [Google Scholar]
  37. Y. Zhang, W.E. Leithead, D.J. Leith and L. Walshe, Log-det approximation based on uniformly distributed seeds and its application to Gaussian process regression, J. Comput. Appl. Math. 220 (2008) 198–214. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you