Free Access
Issue
ESAIM: M2AN
Volume 53, Number 1, January–February 2019
Page(s) 145 - 172
DOI https://doi.org/10.1051/m2an/2018045
Published online 04 April 2019
  1. G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations. Math. Comput. 73 (2004) 613–635. [Google Scholar]
  2. G. Akrivis and C. Lubich, Fully implicit, linearly implicit and implicit–explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131 (2015) 713–735. [CrossRef] [Google Scholar]
  3. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 2nd edn. (2008). [Google Scholar]
  4. C. Baiocchi and M. Crouzeix, On the equivalence of #-stability and #-stability. Recent theoretical results in numerical ordinary differential equations. Appl. Numer. Math. 5 (1989) 19–22. [CrossRef] [Google Scholar]
  5. J.-D. Benamou, G. Carlier, Q. Mérigot and E. Oudet, Discretization of functionals involving the Monge-Ampère operator. Numer. Math. 134 (2016) 611–636. [CrossRef] [Google Scholar]
  6. A. Blanchet, V. Calvez and J.A. Carrillo. Convergence of the mass-transport steepest descent scheme for the subcritical Patlak–Keller–Segel model, SIAM J. Numer. Anal. 46 (2008) 691–721. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Blanchet and P. Laurençot, The parabolic-parabolic Keller-Segel system with critical diffusion as a gradient flow in #. Comm. Part. Differ. Equ. 38 (2013) 658–686. [Google Scholar]
  8. J.H. Bramble, J.E. Pasciak, P.H. Sammon and V. Thomée, Incomplete iterations in multistep backward difference methods for parabolic problems with smooth and nonsmooth data. Math. Comput. 52 (1989) 339–367. [CrossRef] [Google Scholar]
  9. J.A. Carrillo, M. DiFrancesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156 (2011) 229–271. [CrossRef] [MathSciNet] [Google Scholar]
  10. P.E. Crouch and R. Grossman, Numerical integration of ordinary differential equations on manifolds. J. Nonlinear Sci. 3 (1993) 1–33. [CrossRef] [Google Scholar]
  11. G. Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4 (1956) 33–53. [CrossRef] [Google Scholar]
  12. G.G. Dahlquist, A special stability problem for linear multistep methods. BIT Numer. Math. 3 (1963) 27–43. [CrossRef] [Google Scholar]
  13. S. Daneri and G. Savaré, Eulerian calculus for the displacement convexity in the Wasserstein distance. SIAM J. Math. Anal. 40 (2008) 1104–1122. [CrossRef] [Google Scholar]
  14. E. De Giorgi, New problems on minimizing movements. Ennio de Giorgi: Sel. Pap. 29 (1993) 699–713. [Google Scholar]
  15. P. Deuflhard and F. Bornemann, Scientific Computing with Ordinary Differential Equations. Springer Science & Business Media, Berlin, Heidelberg (2012). [Google Scholar]
  16. E. Emmrich. Stability and error of the variable two-step BDF for semilinear parabolic problems, J. Appl. Math. Comput. 19 (2005) 33–55. [CrossRef] [Google Scholar]
  17. E. Emmrich, Convergence of the variable two-step BDF time discretisation of nonlinear evolution problems governed by a monotone potential operator. BIT Numer. Math. 49 (2009) 297–323. [CrossRef] [Google Scholar]
  18. E. Emmrich, Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations. Comput. Methods Appl. Math. 9 (2009) 37–62. [CrossRef] [Google Scholar]
  19. L.C. Ferreira and J.C. Valencia-Guevara, Gradient flows of time-dependent functionals in metric spaces and applications to pdes. Monatsh. Math. 185 (2018) 231–268. [CrossRef] [Google Scholar]
  20. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations. Prentice Hall PTR, Upper Saddle River, NJ, USA (1971). [Google Scholar]
  21. C.W. Gear and L.R. Petzold, ODE methods for the solution of differential/algebraic systems. SIAM J. Numer. Anal. 21 (1984) 716–728. [CrossRef] [Google Scholar]
  22. L. Giacomelli and F. Otto, Variatonal formulation for the lubrication approximation of the Hele-Shaw flow. Calc. Var. Part. Differ. Equ. 13 (2001) 377–403. [Google Scholar]
  23. U. Gianazza, G. Savaré and G. Toscani, The Wasserstein gradient flow of the Fisher information and the quantum drift-diffusion equation. Arch. Ration. Mech. Anal. 194 (2009) 133–220. [Google Scholar]
  24. A. Glitzky and A. Mielke, A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces. Z. Angew. Math. Phys. 64 (2013) 29–52. [CrossRef] [Google Scholar]
  25. E. Hairer and C. Lubich, Energy-diminishing integration of gradient systems. IMA J. Numer. Anal. 34 (2014) 452–461. [CrossRef] [Google Scholar]
  26. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II – Stiff and Differential - Algebraic Problems. Springer Science & Business Media, Berlin, Heidelberg (2013). [Google Scholar]
  27. E. Hansen, Convergence of multistep time discretizations of nonlinear dissipative evolution equations. SIAM J. Numer. Anal. 44 (2006) 55–65. [CrossRef] [Google Scholar]
  28. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  29. O. Junge, D. Matthes and H. Osberger, A fully discrete variational scheme for solving nonlinear Fokker-Planck equations in multiple space dimensions. SIAM J. Numer. Anal. 55 (2017) 419–443. [CrossRef] [Google Scholar]
  30. Y.-H. Kim and R.J. McCann, Continuity, curvature, and the general covariance of optimal transportation. J. Eur. Math. Soc. (JEMS) 12 (2010) 1009–1040. [CrossRef] [Google Scholar]
  31. Y.-H. Kim and R.J. McCann, Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular). J. Peine Angew. Math. (Crelles J.) 2012 (2012) 1–27. [CrossRef] [Google Scholar]
  32. D. Kinderlehrer, L. Monsaingeon and X. Xu, A Wasserstein gradient flow approach to Poisson-Nernst-Planck equations. ESAIM: COCV 23 (2017) 137–164. [CrossRef] [EDP Sciences] [Google Scholar]
  33. H. Kreth, Time-discretisations for nonlinear evolution equations. In: Numerical Treatment of Differential Equations in Applications. In Vol. 679. Springer (1978) 57–63. [CrossRef] [Google Scholar]
  34. L. Laguzet, High order variational numerical schemes with application to Nash-MFG vaccination games. Ricerche Mat. 67 (2018) 247–269. [CrossRef] [Google Scholar]
  35. P. Laurençot and B.-V. Matioc, A gradient flow approach to a thin film approximation of the Muskat problem. Calc. Var. Part. Differ. Equ. 47 (2013) 319–341. [CrossRef] [Google Scholar]
  36. M.-N. Le Roux, Semidiscretization in time for parabolic problems. Math. Comput. 33 (1979) 919–931. [CrossRef] [Google Scholar]
  37. G. Legendre and G. Turinici, Second-order in time schemes for gradient flows in Wasserstein and geodesic metric spaces. C. R. Math. 355 (2017) 345–353. [CrossRef] [Google Scholar]
  38. S. Lisini, D. Matthes and G. Savaré, Cahn-Hilliard and thin film equations with nonlinear mobility as gradient flows in weighted-Wasserstein metrics. J. Differ. Equ. 253 (2012) 814–850. [CrossRef] [Google Scholar]
  39. X.-N. Ma, N.S. Trudinger and X.-J. Wang, Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177 (2005) 151–183. [CrossRef] [MathSciNet] [Google Scholar]
  40. J. Maas, Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261 (2011) 2250–2292. [CrossRef] [Google Scholar]
  41. D. Matthes, R.J. McCann and G. Savaré, A family of nonlinear fourth order equations of gradient flow type. Comm. Part. Differ. Equ. 34 (2009) 1352–1397. [Google Scholar]
  42. D. Matthes and H. Osberger, Convergence of a variational lagrangian scheme for a nonlinear drift diffusion equation. ESAIM: M2AN 48 (2014) 697–726. [CrossRef] [EDP Sciences] [Google Scholar]
  43. R.J. McCann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. [CrossRef] [MathSciNet] [Google Scholar]
  44. A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems. Nonlinearity 24 (2011) 1329. [CrossRef] [Google Scholar]
  45. A. Mielke, Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Part. Differ. Equ. 48 (2013) 1–31. [CrossRef] [Google Scholar]
  46. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. Part. Differ. Equ. 26 (2001) 101–174. [Google Scholar]
  47. G. Peyré, Entropic approximation of Wasserstein gradient flows. SIAM J. Imaging Sci. 8 (2015) 2323–2351. [Google Scholar]
  48. S. Plazotta and J. Zinsl, High-frequency limit of non-autonomous gradient flows of functionals with time-periodic forcing. J. Differ. Equ. 261 (2016) 6806–6855. [CrossRef] [Google Scholar]
  49. R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008) 97–169. [MathSciNet] [Google Scholar]
  50. F. Santambrogio, Optimal Transport for Applied Mathematicians, Birkäuser, NY (2015). [CrossRef] [Google Scholar]
  51. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin, Heidelberg, 2 edn., Vol. 25 (2006). [Google Scholar]
  52. C. Villani, Topics in optimal transportation. Vol. 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2003). [Google Scholar]
  53. C. Villani, Optimal Transport: Old and New., Vol 338. Springer Science & Business Media, Berlin, Heidelberg (2008). [Google Scholar]
  54. J. Zinsl and D. Matthes, Exponential convergence to equilibrium in a coupled gradient flow system modeling chemotaxis. Anal. Part. Differ. Equ. 8 (2015) 425–466. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you