Open Access
Issue
ESAIM: M2AN
Volume 53, Number 1, January–February 2019
Page(s) 269 - 299
DOI https://doi.org/10.1051/m2an/2018076
Published online 15 April 2019
  1. Vol’pert F. Alcrudo and F. Benkhaldoun, Exact solutions to the Riemann problem of the shallow water equations with a bottom step. Comput. Fluids 30 (2001) 643–671. [CrossRef] [Google Scholar]
  2. E. Audusse, M.-O. Bristeau, B. Perthame and J. Sainte-Marie, A multilayer Saint-Venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: M2AN 45 (2011) 169–200. [CrossRef] [EDP Sciences] [Google Scholar]
  3. J. Best, The fluid dynamics of river dunes: a review and some future research directions. J. Geophys. Res. Earth Surf. 110 (2005) F4. [CrossRef] [Google Scholar]
  4. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources. Frontiers in Mathematics Birkhäuser Verlag Basel 2004 (2004). [CrossRef] [Google Scholar]
  5. F. Bouchut, J. Le Sommer and V. Zeitlin, Frontal geostrophic adjustment and nonlinear wave phenomena in one-dimensional rotating shallow water. Part 2. High-resolution numerical simulations. J. Fluid Mech. 514 (2004) 35–63. [CrossRef] [Google Scholar]
  6. J. Burguete and P. Garcìa-Navarro, Implicit schemes with large time step for non-linear equations: application to river flow hydraulics. Int. J. Numer. Meth. Fluids 46 (2004) 607–636. [CrossRef] [Google Scholar]
  7. V. Caleffi, A. Valiani and A. Zanni, Finite volume method for simulating extreme flood events in natural channels, J. Hydraul. Res. 41 (2003) 167–177. [CrossRef] [Google Scholar]
  8. M.J.C. Daz, E.D. Fernández-Nieto and A.M. Ferreiro, Sediment transport models in shallow water equations and numerical approach by high order finite volume methods. Comput. Fluids 37 (2008) 299–316. [CrossRef] [MathSciNet] [Google Scholar]
  9. T. Cebeci and H.B. Keller, Shooting and parallel shooting methods for solving the falkner-skan boundary-layer equation. J. Comput. Phys. 7 (1971) 289–300. [CrossRef] [Google Scholar]
  10. F. Charru, B. Andreotti and P. Claudin, Sand ripples and dunes. Annu. Rev. Fluid Mech. 45 (2013) 469–493. [CrossRef] [Google Scholar]
  11. V.T. Chow, Open-Channel Hydraulics. McGraw-Hill, New York, NY (1959). [Google Scholar]
  12. A.J.-C. de Saint Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. C. R. Acad. Sci. 73 (1871) 147–154. [Google Scholar]
  13. G. Dal Maso, P. LeFloch and F. Murat, Definition and weak stability of nonconservative products. J. Math. Pures Appl. 74 (1995) 483–548. [Google Scholar]
  14. O. Delestre, S. Cordier, F. James and F. Darboux, Simulation of rain-water overland-flow. In: Proceedings of the 12th International Conference on Hyperbolic Problems. University of Maryland, College Park (USA) (2008). [Google Scholar]
  15. E. Tadmor, J.-G. Liu and A. Tzavaras Eds., Proceedings of symposia in applied mathematics. Amer. Math. Soc. 67 (2009) 537–546. [Google Scholar]
  16. A. Doré, P. Bonneton, V. Marieu and T. Garlan, Numerical modeling of subaqueous sand dune morphodynamics. J. Geophys. Res. Earth Surf. 121 (2016) 565–587. [CrossRef] [Google Scholar]
  17. A. Ellis and A. Fowler, On an evolution equation for sand dunes. SIAM J. Appl. Math. (2010). [Google Scholar]
  18. M. Esteves, X. Faucher, S. Galle and M. Vauclin, Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values. J. Hydrol. 228 (2000) 265–282. [CrossRef] [Google Scholar]
  19. F.M. Exner, Uber die wechselwirkung zwischen wasser und geschiebe in flussen. Akad. Wiss. Wien Math. Naturwiss. Klasse 134 (1925) 165–204. [Google Scholar]
  20. V. Falkner and S.W. Skan, Solutions of the boundary-layer equations. London, Edinburgh, and Dublin Philos. Mag. J. Sci. 12 (1931) 865–896. [CrossRef] [Google Scholar]
  21. A. Fowler, Dunes and drumlins. In: Geomorphological Fluid Mechanics. Springer, Berlin (2001) 430–454. [Google Scholar]
  22. D.L. George, Finite volume methods and adaptive refinement for tsunami propagation and inundation. Ph.D. thesis, University of Washington (2006). [Google Scholar]
  23. J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89–102. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Ghigo, J.-M. Fullana and P.-Y. Lagrée, A 2D nonlinear multiring model for blood flow in large elastic arteries. J. Comput. Phys. 350 (2017) 136–165. [CrossRef] [Google Scholar]
  25. E. Godlewski, P.-A. Raviart, Numerical approximations of hyperbolic systems of conservation laws. Applied Mathematical Sciences Springer-Verlag, New York, NY 118 (1996). [CrossRef] [Google Scholar]
  26. N. Goutal, M.-H. Le, P. Ung, A Godunov-type scheme for shallow water equations dedicated to simulations of overland flows on steep slopes. In: International Conference on Finite Volumes for Complex Applications, Springer, Berlin (2017) 275–283. [Google Scholar]
  27. N. Goutal and F. Maurel, Proceedings of the 2nd workshop on dam-break wave simulation. Technical Report, EDF-DER (1997). [Google Scholar]
  28. R.S. Govindaraju, Modeling overland flow contamination by chemicals mixed in shallow soil horizons under variable source area hydrology. Water Resour. Res. 32 (1996) 753–758. [CrossRef] [Google Scholar]
  29. A. Harten, P.D. Lax and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. [CrossRef] [MathSciNet] [Google Scholar]
  30. A.J. Hogg and D. Pritchard, The effects of hydraulic resistance on dam-break and other shallow inertial flows. J. Fluid Mech. 501 (2004) 179–212. [CrossRef] [Google Scholar]
  31. R.S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997). [CrossRef] [Google Scholar]
  32. S. Kalliadasis, C. Ruyer-Quil, B. Scheid and M.G. Velarde, Falling Liquid Films. Springer Science & Business Media 176 (2011). [Google Scholar]
  33. J.F. Kennedy, The mechanics of dunes and antidunes in erodible-bed channels. J. Fluid Mech. 16 (1963) 521–544. [CrossRef] [Google Scholar]
  34. M.M. Keshtkar and M. Ezatabadi, Numerical solution for the falkner–skan boundary layer viscous flow over a wedge. Int. J. Eng. Sci. Technol. 3 (2013) 18–36. [Google Scholar]
  35. D.-H. Kim, Y.-S. Cho and Y.-K. Yim, Propagation and run-up of nearshore tsunamis with hllc approximate riemann solver. Ocean Eng. 34 (2007) 1164–1173. [CrossRef] [Google Scholar]
  36. G. Kirstetter, J. Hu, O. Delestre, F. Darboux, P.-Y. Lagrée, S. Popinet, J.M. Fullana and C. Josserand, Modeling rain-driven overland flow: empirical versus analytical friction terms in the shallow water approximation. J. Hydrol. 536 (2016) 1–9. [CrossRef] [Google Scholar]
  37. K.K.J. Kouakou and P.-Y. Lagrée, Evolution of a model dune in a shear flow. Eur. J. Mech.-B/Fluids 25 (2006) 348–359. [CrossRef] [MathSciNet] [Google Scholar]
  38. P.-Y. Lagrée, A triple deck model of ripple formation and evolution. Phys. Fluids 15 (2003) 2355–2368. [CrossRef] [Google Scholar]
  39. P.-Y. Lagrée, Interactive boundary layer (IBL). In: Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances. Springer, Berlin (2010) 247–286. [CrossRef] [Google Scholar]
  40. P.-Y. Lagrée, E. Berger, M. Deverge, C. Vilain and A. Hirschberg, Characterization of the pressure drop in a 2D symmetrical pipe: some asymptotical, numerical, and experimental comparisons. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 85 (2005) 141–146. [CrossRef] [Google Scholar]
  41. P.-Y. Lagrée and S. Lorthois, The RNS/Prandtl equations and their link with other asymptotic descriptions: application to the wall shear stress scaling in a constricted pipe. Int. J. Eng. Sci. 43 (2005) 352–378. [CrossRef] [Google Scholar]
  42. P.-Y. Lagrée, A. Van Hirtum and X. Pelorson, Asymmetrical effects in a 2D stenosis. Eur. J. Mech.-B/Fluids 26 (2007) 83–92. [CrossRef] [Google Scholar]
  43. M.-H. Le, S. Cordier, C. Lucas and O. Cerdan, A faster numerical scheme for a coupled system modeling soil erosion and sediment transport. Water Resour. Res. 51 (2015) 987–1005. [CrossRef] [Google Scholar]
  44. M.-R. Muñoz-Ruiz and C. Parés, Godunov method for nonconservative hyperbolic systems. ESAIM: M2AN 41 (2007) 169–185. [CrossRef] [EDP Sciences] [Google Scholar]
  45. M. Nabi, H. Vriend, E. Mosselman, C. Sloff and Y. Shimizu, Detailed simulation of morphodynamics: 3. Ripples and dunes. Water Resour. Res. 49 (2013) 5930–5943. [CrossRef] [Google Scholar]
  46. S. Naqshband, O. Duin, J. Ribberink and S. Hulscher, Modeling river dune development and dune transition to upper stage plane bed. Earth Surf. Process. Landf. 15 (2015) 323–335. [Google Scholar]
  47. R. Nickalls, 95.60 a new bound for polynomials when all the roots are real. Math. Gazette 95 (2011) 520–526. [CrossRef] [Google Scholar]
  48. A.J. Paarlberg, C.M. Dohmen-Janssen, S.J. Hulscher and P. Termes, Modeling river dune evolution using a parameterization of flow separation. J. Geophys. Res. Earth Surf. 114 (2009) F1. [CrossRef] [Google Scholar]
  49. S. Popinet, Quadtree-adaptative tsunami modelling. Ocean Dyn. 61 (2011) 1261–1285. [CrossRef] [Google Scholar]
  50. L. Prandtl, Motion of fluids with very little viscosity. NACA Transl. 452 (1928) 1–8. [Google Scholar]
  51. G.L. Richard and S.L. Gavrilyuk, A new model of roll waves: comparison with brock’s experiments. J. Fluid Mech. 698 (2012) 374–405. [Google Scholar]
  52. J. Rivlin (Byk) and R. Wallach, An analytical solution for the lateral transport of dissolved chemicals in overland flow. Water Resour. Res. 31 (1995) 1031–1040. [Google Scholar]
  53. H. Schlichting, Boundary-layer Theory. McGraw-Hill, New York, NY (1968). [Google Scholar]
  54. K. Stewartson, On the impulsive motion of a flat plate in a viscous fluid. Quart. J. Mech. Appl. Math. 4 (1951) 182–198. [CrossRef] [Google Scholar]
  55. K. Stewartson, On the impulsive motion of a flat plate in a viscous fluid. II. Quart. J. Mech. Appl. Math. 26 (1973) 143–152. [CrossRef] [Google Scholar]
  56. L. Tatard, O. Planchon, J. Wainwright, G. Nord, D. Favis-Mortlock, N. Silvera, O. Ribolzi, M. Esteves and C.-H. Huang, Measurement and modelling of high-resolution flow-velocity data under simulated rainfall on a low-slope sandy soil. J. Hydrol. 348 (2008) 1–12. [CrossRef] [Google Scholar]
  57. A. Valiani, V. Caleffi and A. Zanni, Case study: malpasset dam-break simulation using a two-dimensional finite volume methods. J. Hydraul. Eng. 128 (2002) 460–472. [CrossRef] [Google Scholar]
  58. M. Van Dyke, Perturbation Methods in Fluid Mechanics. Parabolic Press, Incorporated, Hackensack, NY (1975). [Google Scholar]
  59. A.I. Vol’pert, The spaces BV and quasilinear equations. Matematicheskii Sbornik 115 (1967) 255–302. [Google Scholar]
  60. J. Zhang and B. Chen, An iterative method for solving the falkner–skan equation. Appl. Math. Comput. 210 (2009) 215–222. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you