Open Access
Issue
ESAIM: M2AN
Volume 53, Number 2, March-April 2019
Page(s) 701 - 728
DOI https://doi.org/10.1051/m2an/2018070
Published online 29 May 2019
  1. K. Asano, On the incompressible limit of the compressible euler equation. Jpn. J. Appl. Math 4 (1987) 455–488. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Badsi, M. Campos Pinto, B. Déspres, A minimization formulation of a bi-kinetic sheath. Kinet. Relat. Mod. 9 (2016) 621–656. [CrossRef] [Google Scholar]
  3. G. Bispen, M. Lukacova-Medvidova, L. Yelsh, Asymptotic preserving IMEX finite volume schemes for low mach number euler equations with gravitation. J. Comput. Phys. 335 (2017) 222–248. [Google Scholar]
  4. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion. Springer, Berlin (1984). [CrossRef] [Google Scholar]
  5. P. Crispel, P. Degond, M.-H. Vignal, An asymptotic preserving scheme for the two-fluid euler poisson model in the quasineutral limit. J. Comput. Phys. 223 (2007) 208–234. [Google Scholar]
  6. P. Degond, F. Deluzet, A. Sangam, M.-H. Vignal, An asymptotic-preserving scheme for the euler equations in a strong magnetic field. J. Comput. Phys. 228 (2009) 3540–3558. [Google Scholar]
  7. F. Deluzet, M. Ottaviani, S. Possaner, A drift-asymptotic scheme for a fluid description of plasmas in strong magnetic fields. Comput. Phys. Commun. 219 (2017) 164–177. [Google Scholar]
  8. G. Dimarco, R. Loubère, M.-H. Vignal, Study of a new asymptotic preserving scheme for the euler system in the low mach number limit. SIAM J. Sci. Comput. 39 (2017) A2099–A2128. [Google Scholar]
  9. T.F. Riemann, Solvers and Numerical Methods for Fluid Dynamics. Springer-Verlag, Berlin (1997). [Google Scholar]
  10. F. Filbet, S. Jin, An asymptotic-preserving scheme for the ES-BGK model of the boltzmann equation. J. Sci. Comput. 46 (2011) 204–224. [Google Scholar]
  11. L. Gastaldo, R. Herbin, J.-C. Latché, A discretization of the phase mass balance in fractional step algorithms for the drift-flux model. IMA J. Numer. Anal. 31 (2011) 116–146. [CrossRef] [Google Scholar]
  12. D. Grapsas, R. Herbin, W. Kheriji, J.-C. Latché, An unconditionnaly stable staggered pressure correction scheme for the compressible navier-stokes equations. J. Comput. Math. 2 (2016) 51–97. [Google Scholar]
  13. H. Guillard, C. Viozat, On the behavior of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. [Google Scholar]
  14. R. Hazeltine, J. Meiss, Plasma Confinement, Inc. Mineola, New York, NY (2003). [Google Scholar]
  15. J. Jaack, S. Jin, J.-G. Liu, An all-speed asymptotic-preserving method for the isentropic euler and navier-stokes equations. Commun. Comput. Phys. 12 (2012) 955–980. [Google Scholar]
  16. S. Jin, Runge-Kutta methods for hyperbolic conservation laws with stiff relaxation terms. J. Comput. Phys. 122 (1995) 51–67. [Google Scholar]
  17. S. Jin, Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations. SIAM J. Sci. Comput. 21 (1999) 441–154. [Google Scholar]
  18. T. Kato, The cauchy problem for quasi-linear symmetric hyperbolic systems. Ration. Mech. Anal. 58 (1975) 181–205. [CrossRef] [MathSciNet] [Google Scholar]
  19. K. Klainerman, A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 4 (1981) 481–524. [Google Scholar]
  20. R.J. Leveque, Numerical Methods for Conservation Laws. Birkhauser, Basel (1992). [CrossRef] [Google Scholar]
  21. R.J. Leveque, Finite-Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge (2004). [Google Scholar]
  22. A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer, Berlin (1984). [CrossRef] [Google Scholar]
  23. G. Metivier, S. Schochet, The incompressible limit of the non-isentropic euler equations. Arch. Rational Mech. Anal. 158 (2001) 61–90. [CrossRef] [Google Scholar]
  24. C. Negulescu, S. Possaner, Closure of the strongly-magnetized electron fluid equations in the adiabatic regime. Multi. Model. Simul. 14 (2016) 839–873. [CrossRef] [Google Scholar]
  25. P. Degond, F. Deluzet, C. Negulescu, An asymptotic-preserving scheme for strongly anisotropic problems. Multi. Model. Simul. 8 (2010) 645–666. [CrossRef] [Google Scholar]
  26. P. Degond, M. Tang, All speed scheme for the low mach number limit of the itenstropic euler equations. Commun. Comput. Phys. 10 (2011) 1–31. [Google Scholar]
  27. R. Herbin, J. Latché, T.T. Nguyen, Consistent explicit staggered schemes for the Euler equations. Part II: The Euler equation. Preprint Hal-00821070 (2013). [Google Scholar]
  28. S. Brull, P. Degond, F. Deluzet, A. Mouton, An asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinet. Relat. Mod. 4 (2011) 991–1023. [Google Scholar]
  29. S. Schochet, The compressible euler equations in a bounded domain: existence of solutions and the incompressible limit. Commun. Math. Phys. 104 (1986) 49–75. [CrossRef] [MathSciNet] [Google Scholar]
  30. P. Stangeby, The Plasma Boundary of Magnetic Fusion Devices. Institute of Physics Publishing, Bristol (2000). [CrossRef] [Google Scholar]
  31. H. Zakerzadeh, On the mach-uniformity of the lagrange-projection scheme. ESAIM: M2AN 51 (2017) 1343–1366. [EDP Sciences] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you