Open Access
Issue
ESAIM: M2AN
Volume 53, Number 2, March-April 2019
Page(s) 635 - 658
DOI https://doi.org/10.1051/m2an/2018073
Published online 01 May 2019
  1. R. Andreev, Stability of space-time Petrov-Galerkin discretizations for parabolic evolution equations. Ph.D. thesis, ETH Zürich (2012). [Google Scholar]
  2. R. Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations. IMA J. Numer. Anal. 33 (2013) 242–260. [CrossRef] [Google Scholar]
  3. R. Andreev, Space-time discretization of the heat equation. Numer. Algorithms 67 (2014) 713–731. [Google Scholar]
  4. M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An “empirical interpolation” method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris 339 (2004) 667–672. [CrossRef] [MathSciNet] [Google Scholar]
  5. E. Cancès, V. Ehrlacher and T. Lelièvre, Convergence of a greedy algorithm for high-dimensional convex nonlinear problems. Math. Models Methods Appl. Sci. 21 (2011) 2433–2467. [Google Scholar]
  6. E. Cancès, V. Ehrlacher and T. Lelièvre, Greedy algorithms for high-dimensional eigenvalue problems. Constr. Approx. 40 (2014) 387–423. [Google Scholar]
  7. F. Chinesta, R. Keunings and A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer. Springer Briefs in Applied Sciences and Technology. Springer, Cham (2014). [CrossRef] [Google Scholar]
  8. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Vol 5 Evolution Problems I. Springer-Verlag, Berlin, Germany (1992). [Google Scholar]
  9. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. In Vol. 159 of Applied Mathematical Sciences. Springer-Verlag, New York (2004). [CrossRef] [Google Scholar]
  10. A. Ern, I. Smears and M. Vohralk, Guaranteed, locally space-time efficient, and polynomial-degree robust a posteriori error estimates for high-order discretizations of parabolic problems. SIAM J. Numer. Anal. 55 (2017) 2811–2834. [Google Scholar]
  11. A. Falcó and A. Nouy, A proper generalized decomposition for the solution of elliptic problems in abstract form by using a functional Eckart-Young approach. J. Math. Anal. Appl. 376 (2011) 469–480. [Google Scholar]
  12. A. Falcó and A. Nouy, Proper generalized decomposition for nonlinear convex problems in tensor Banach spaces. Numer. Math. 121 (2012) 503–530. [Google Scholar]
  13. M.J. Gander and S. Vandewalle, Analysis of the parareal time-parallel time-integration method. SIAM J. Sci. Comput. 29 (2007) 556–578. [Google Scholar]
  14. M.J. Gander and H. Zhao, Overlapping Schwarz waveform relaxation for the heat equation in # dimensions. BIT 42 (2002) 779–795. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Giladi and H.B. Keller, Space-time domain decomposition for parabolic problems. Numer. Math. 93 (2002) 279–313. [Google Scholar]
  16. M. Griebel, D. Oeltz, A sparse grid space-time discretization scheme for parabolic problems. Computing 81 (2007) 1–34. [CrossRef] [Google Scholar]
  17. M.D. Gunzburger and A. Kunoth, Space-time adaptive wavelet methods for optimal control problems constrained by parabolic evolution equations. SIAM J. Control Optim. 49 (2011) 1150–1170. [CrossRef] [MathSciNet] [Google Scholar]
  18. V.H. Hoang and C. Schwab, Sparse tensor Galerkin discretization of parametric and random parabolic PDEs – analytic regularity and generalized polynomial chaos approximation. SIAM J. Math. Anal. 45 (2013) 3050–3083. [CrossRef] [Google Scholar]
  19. J. Janssen and S. Vandewalle, Multigrid waveform relaxation of spatial finite element meshes: the continuous-time case. SIAM J. Numer. Anal. 33 (1996) 456–474. [Google Scholar]
  20. E. Kieri, C. Lubich and H. Walach, Discretized dynamical low-rank approximation in the presence of small singular values. SIAM J. Numer. Anal. 54 (2016) 1020–1038. [Google Scholar]
  21. O. Koch and C. Lubich, Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29 (2007) 434–454. [Google Scholar]
  22. P. Ladevèze, Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation. Springer Science & Business Media, New York, NY (2012). [Google Scholar]
  23. C. Le Bris, T. Lelièvre and Y. Maday, Results and questions on a nonlinear approximation approach for solving high-dimensional partial differential equations. Constr. Approx. 30 (2009) 621–651. [Google Scholar]
  24. J.-L. Lions, Y. Maday and G. Turinici, Résolution d’EDP par un schéma en temps “pararéel”. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 661–668. [CrossRef] [Google Scholar]
  25. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications I, II. Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181–182. Springer-Verlag, New York-Heidelberg (1972). [Google Scholar]
  26. C. Lubich and I.V. Oseledets, A projector-splitting integrator for dynamical low-rank approximation. BIT 54 (2014) 171–188. [CrossRef] [Google Scholar]
  27. A. Mantzaflaris, F. Scholz and I. Toulopoulos, Low-rank space-time isogeometric analysis for parabolic problems with varying coefficients. Comp. Methods Appl. Math. 19 (2019) 123–136. [CrossRef] [Google Scholar]
  28. M. Neumüller and I. Smears, Time-parallel iterative solvers for parabolic evolution equations. SIAM J. Sci. Comput. 41 (2019) C28–C51. [Google Scholar]
  29. A. Nouy, Recent developments in spectral stochastic methods for the numerical solution of stochastic partial differential equations. Arch. Comput. Methods Eng. 16 (2009) 251–285. [Google Scholar]
  30. A. Nouy, A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations. Comput. Methods Appl. Mech. Eng. 199 (2010) 1603–1626. [Google Scholar]
  31. C.C. Paige and M.A. Saunders, LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Softw. 8 (1982) 43–71. [Google Scholar]
  32. C. Schwab and R. Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78 (2009) 1293–1318. [Google Scholar]
  33. F. Tantardini and A. Veeser, The L2-projection and quasi-optimality of Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 54 (2016) 317–340. [Google Scholar]
  34. V.N. Temlyakov, Greedy approximation. Acta Numer. 17 (2008) 235–409. [CrossRef] [MathSciNet] [Google Scholar]
  35. V. Thomée, Galerkin finite element methods for parabolic problems, 2nd edition. In Vol. 25 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin (2006). [Google Scholar]
  36. K. Urban and A.T. Patera, A new error bound for reduced basis approximation of parabolic partial differential equations. C. R. Math. Acad. Sci. Paris 350 (2012) 203–207. [CrossRef] [Google Scholar]
  37. A. Uschmajew, Local convergence of the alternating least squares algorithm for canonical tensor approximation. SIAM J. Matrix Anal. Appl. 33 (2012) 639–652. [Google Scholar]
  38. J. Wloka, Partial Differential Equations. Translated from the German by C.B. Thomas and M.J. Thomas. Cambridge University Press, Cambridge (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you