Open Access
Issue
ESAIM: M2AN
Volume 53, Number 3, May-June 2019
Page(s) 729 - 747
DOI https://doi.org/10.1051/m2an/2018049
Published online 05 June 2019
  1. S. Adjerid, A posteriori finite element error estimation for second-order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 4699–4719. [Google Scholar]
  2. S. Adjerid, A posteriori error estimation for the method of lumped masses applied to second-order hyperbolic problems. Comput. Methods Appl. Mech. Eng. 195 (2006) 4203–4219. [Google Scholar]
  3. S. Adjerid and T.C. Massey, A posteriori discontinuous finite element error estimation for two-dimensional hyperbolic problems. Comput. Methods Appl. Mech. Eng. 191 (2002) 5877–5897. [Google Scholar]
  4. S. Adjerid and H. Temimi. A discontinuous galerkin method for the wave equation, Comput. Methods Appl. Mech. Eng. 200 (2011) 837–849. [Google Scholar]
  5. G.A. Baker, Error estimates for finite element methods for second order hyperbolic equations. SIAM J. Numer. Anal. 13 (1976) 564–576. [Google Scholar]
  6. W. Bangerth, M. Geiger and R. Rannacher, Adaptive galerkin finite element methods for the wave equation. Comput. Methods Appl. Math. Comput. Methods Appl. Math. 10 (2010) 3–48. [Google Scholar]
  7. W. Bangerth and R. Rannacher, Finite element approximation of the acoustic wave equation: Error control and mesh adaptation. East West J. Numer. Math. 7 (1999) 263–282. [Google Scholar]
  8. W. Bangerth and R. Rannacher, Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoust. 9 (2001) 575–591. [Google Scholar]
  9. C. Bernardi and E. Süli, Time and space adaptivity for the second-order wave equation. Math. Models Methods Appl. Sci. 15 (2005) 199–225. [Google Scholar]
  10. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Springer, New York, NY (2004). [Google Scholar]
  11. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence, RI (2010). [Google Scholar]
  12. E.H. Georgoulis, O. Lakkis and C. Makridakis, A posteriori L (L2)-error bounds for finite element approximations to the wave equation. IMA J. Numer. Anal. 33 (2013) 1245–1264. [Google Scholar]
  13. E.H. Georgoulis, O. Lakkis, C.G. Makridakis and J.M. Virtanen, A posteriori error estimates for leap-frog and cosine methods for second order evolution problems. SIAM J. Numer. Anal. 54 (2016) 120–136. [Google Scholar]
  14. O. Gorynina, Eléments finis adaptatifs pour l’équation des ondes instationnaire. Ph.D. thesis, Université de Bourgogne Franche-Comté (2018). [Google Scholar]
  15. O. Gorynina, A. Lozinski and M. Picasso, Time and space adaptivity of the wave equation discretized in time by a second order scheme. IMA J. Numer. Anal. (2018) doi: 10.1093/imanum/dry048. [Google Scholar]
  16. F. Hecht, New development in freefem++. J. Numer. Math. 20 (2012) 251–266. [Google Scholar]
  17. A. Lozinski, M. Picasso and V. Prachittham, An anisotropic error estimator for the Crank-Nicolson method: application to a parabolic problem. SIAM J. Sci. Comput. 31 (2009) 2757–2783. [Google Scholar]
  18. N.M. Newmark, A method of computation for structural dynamics. J. Eng. Mech. Div. 85 (1959) 67–94. [Google Scholar]
  19. P.-A. Raviart and J.-M. Thomas, Introduction à l’analyse numérique des équations aux dérivées partielles. Collection Mathématiques Appliquées pour la Maitrise [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris (1983). [Google Scholar]
  20. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you