Open Access
Volume 53, Number 3, May-June 2019
Page(s) 925 - 958
Published online 21 June 2019
  1. T. Aboiyar, E.H. Georgoulis and A. Iske, High order weno finite volume schemes using polyharmonic spline reconstruction. In: Proceedings of the International Conference on Numerical Analysis and Approximation Theory NAAT2006. Dept. of Mathematics. University of Leicester, Cluj-Napoca (Romania) (2006). [Google Scholar]
  2. T. Aboiyar, E.H. Georgoulis and A. Iske, Adaptive ader methods using kernel-based polyharmonic spline weno reconstruction. SIAM J. Sci. Comput. 32 (2010) 3251–3277. [Google Scholar]
  3. C. Bigoni and J.S. Hesthaven, Adaptive weno methods based on radial basis function reconstruction. J. Sci. Comput. 72 (2017) 986–1020. [Google Scholar]
  4. J.P. Boyd, Error saturation in gaussian radial basis functions on a finite interval, J. Comput. Appl. Math. 234 (2010) 1435–1441. [Google Scholar]
  5. P. Chandrashekar, Kinetic energy preserving and entropy stable finite volume schemes for compressible euler and navier-stokes equations. Commun. Comput. Phys. 14 (2013) 1252–1286. [Google Scholar]
  6. D. Derigs, A.R. Winters, G.J. Gassner and S. Walch, A novel averaging technique for discrete entropy-stable dissipation operators for ideal MHD. J. Comput. Phys. 330 (2017) 624–632. [Google Scholar]
  7. T.A. Driscoll and B. Fornberg, Interpolation in the limit of increasingly flat radial basis functions. Comput. Math. Appl. 43 (2002) 413–422. [Google Scholar]
  8. J. Duchon, Splines Minimizing Rotation-invariant Semi-norms in Sobolev Spaces. Springer, Berlin (1977) 85–100. [Google Scholar]
  9. G.E. Fasshauer and J.G. Zhang, On choosing ``optimal’’ shape parameters for RBF approximation. Numer. Algorithms 45 (2007) 345–368. [Google Scholar]
  10. U.S. Fjordholm, S. Mishra and E. Tadmor, Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography. J. Comput. Phys. 230 (2011) 5587–5609. [Google Scholar]
  11. U.S. Fjordholm, S. Mishra and E. Tadmor, Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes for systems of conservation laws. SIAM J. Numer. Anal. 50 (2012) 544–573. [Google Scholar]
  12. U.S. Fjordholm, S. Mishra and E. Tadmor, Eno reconstruction and eno interpolation are stable. Found. Comput. Math. 13 (2013) 139–159. [CrossRef] [Google Scholar]
  13. U.S. Fjordholm and D. Ray, A sign preserving weno reconstruction method. J. Sci. Comput. 68 (2016) 42–63. [Google Scholar]
  14. B. Fornberg, E. Larsson and N. Flyer, Stable computations with gaussian radial basis functions in 2-D. Technical report, Department of Information Technology, Uppsala University (2009). [Google Scholar]
  15. B. Fornberg and C. Piret, A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30 (2007) 60–80. [Google Scholar]
  16. B. Fornberg and G. Wright, Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48 (2004) 853–867. [Google Scholar]
  17. S. Gottlieb, D.I. Ketcheson and C.-W. Shu, High order strong stability preserving time discretizations. J. Sci. Comput. 38 (2009) 251–289. [Google Scholar]
  18. A. Harten, B. Engquist, S. Osher and S.R. Chakravarthy, Uniformly high order accurate essentially non-oscillatory schemes III. J. Comput. Phys. 71 (1987) 231–303. [Google Scholar]
  19. A. Harten, J.M. Hyman, P.D. Lax and B. Keyfitz, On finitedifference approximations and entropy conditions for shocks. Commun. Pure Appl. Math. 29 (1976) 297–322. [Google Scholar]
  20. J.S. Hesthaven, Numerical Methods for Conservation Laws: From Analysis to Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PN (2018). [Google Scholar]
  21. S.N. Kružkov, First order quasilinear equations in several independent variables. Math. USSR-Sbornik 10 (1970) 217. [CrossRef] [Google Scholar]
  22. E. Larsson and B. Fornberg, Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions. Comput. Math. Appl. 49 (2005) 103–130. [Google Scholar]
  23. A.-Y. le Roux, A numerical conception of entropy for quasi-linear equations. Math. Comput. 31 (1977) 848–872. [Google Scholar]
  24. P.G. Lefloch, J.-M. Mercier and C. Rohde, Fully discrete, entropy conservative schemes of arbitraryorder. . SIAM J. Numer. Anal. 40 (2002) 1968–1992. [CrossRef] [MathSciNet] [Google Scholar]
  25. R.J. LeVeque, Numerical Methods for Conservation Laws. Springer Science & Business Media, Berlin (1992). [CrossRef] [Google Scholar]
  26. M.L. Merriam, An Entropy-based Approach to Nonlinear Stability. Stanford University, Stanford, CA, USA (1989). [Google Scholar]
  27. C.A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx. 2 (1986) 11–22. [Google Scholar]
  28. M.S. Mock, Systems of conservation laws of mixed type. J. Differ. Equ. 37 (1980) 70–88. [Google Scholar]
  29. G. Mühlbach, A recurrence formula for generalized divided differences and some applications. J. Approx. Theory 9 (1973) 165–172. [Google Scholar]
  30. G. Mühlbach, The general neville-aitken-algorithm and some applications. Numer. Math. 31 (1978) 97–110. [Google Scholar]
  31. F.J. Narcowich and J.D. Ward, Norm estimates for the inverses of a general class of scattered-data radial-function interpolation matrices. J. Approx. Theory 69 (1992) 84–109. [Google Scholar]
  32. D. Ray, P. Chandrashekar, U.S. Fjordholm and S. Mishra, Entropy stable scheme on two-dimensional unstructured grids for euler equations. Commun. Comput. Phys. 19 (2016) 1111–1140. [Google Scholar]
  33. S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comput. Math. 11 (1999) 193–210. [Google Scholar]
  34. R. Schaback, Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3 (1995) 251–264. [Google Scholar]
  35. R. Schaback, Native hilbert spaces for radial basis functions I. New Deve. Approx. Theory 132 (1998) 255–282. [Google Scholar]
  36. R. Schaback, Multivariate interpolation by polynomials and radial basis functions. Constr. Approx. 21 (2005) 293–317. [Google Scholar]
  37. C.-W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439–471. [Google Scholar]
  38. E. Tadmor, The numerical viscosity of entropy stable schemes for systems of conservation laws. I. Math. Comput. 49 (1987) 91–103. [CrossRef] [MathSciNet] [Google Scholar]
  39. B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to godunov’s method. J. Comput. Phys. 32 (1979) 101–136. [Google Scholar]
  40. H. Wendland, Scattered Data Approximation. Cambridge University Press, Cambridge (2004). [CrossRef] [Google Scholar]
  41. P. Woodward and P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54 (1984) 115–173. [Google Scholar]
  42. G.B. Wright and B. Fornberg, Stable computations with flat radial basis functions using vector-valued rational approximations. J. Comput. Phys. 331 (2017) 137–156. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you