Open Access
Issue
ESAIM: M2AN
Volume 53, Number 4, July-August 2019
Page(s) 1125 - 1156
DOI https://doi.org/10.1051/m2an/2019014
Published online 05 July 2019
  1. I. Aavatsmark, T. Barkve, O. Boe and T. Mannseth, Discretization on unstructured grids for inhomogeneous, anisotropic media. Part I: derivation of the methods. SIAM J. Sci. Comput. 19 (1998). [Google Scholar]
  2. A.S. Abushaikha, D.V. Voskov and H.A. Tchelepi, Fully implicit mixed-hybrid finite element discretization for general purpose subsurface reservoir simulation. J. Comput. Phys. 346 (2017) 514–538. [Google Scholar]
  3. O. Angelini, C. Chavant, E. Chénier, R. Eymard and S. Granet, Finite volume approximation of a diffusion-dissolution model and application to nuclear waste storage. Math. Comput. Simul. 81 (2011) 2001–2017. [Google Scholar]
  4. K. Aziz and A. Settari, Petroleum Reservoir Simulation. Applied Science Publishers (1979). [Google Scholar]
  5. L. Beaude, K. Brenner, S. Lopez, R. Masson and F. Smai, Non-isothermal compositional liquid gas Darcy flow: formulation, soil-atmosphere boundary condition and application to high energy geothermal simulations, Preprint https://hal.archives-ouvertes.fr/hal-01702391 (2018). [Google Scholar]
  6. R. Bertani, Geothermal power generation in the world 2010–2014 update report. Geothermics 60 (2016) 31–43. [Google Scholar]
  7. K. Brenner and R. Masson, Convergence of a vertex centered discretization of two-phase Darcy flows on general meshes. Int. J. Finite Volume Methods (2013). [Google Scholar]
  8. H. Class, R. Helmig and P. Bastian, Numerical simulation of non-isothermal multiphase multicomponent processes in porous media: 1. An efficient solution technique. Adv. Water Res. 25 (2002) 533–550. [CrossRef] [Google Scholar]
  9. K.H. Coats, Implicit compositional simulation of single-porosity and dual-porosity reservoirs. In: SPE Symposium on Reservoir Simulation. Society of Petroleum Engineers (1989). [Google Scholar]
  10. J. Droniou, R. Eymard, T. Gallouët and C. Guichard, R. Herbin, The gradient discretization method: a framework for the discretization of linear and nonlinear elliptic and parabolic problems. Preprint https://hal.archives-ouvertes.fr/hal-01382358 (2016). [Google Scholar]
  11. J. Droniou, R. Eymard, T. Gallouët and R. Herbin, A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci. 20 (2010) 265–295. [Google Scholar]
  12. J. Droniou, R. Eymard, T. Gallouët and R. Herbin, Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. 23 (2013) 2395–2432. [Google Scholar]
  13. J. Droniou, Finite volume schemes for diffusion equations: introduction and review of modern methods. Math. Models Methods Appl. Sci. 24 (2014) 1575–1619. [Google Scholar]
  14. M.G. Edwards and C.F. Rogers, Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci. 2 (1998) 250–290. [Google Scholar]
  15. R. Eymard, C. Guichard and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media, ESAIM: M2AN 46 (2010) 265–290. [CrossRef] [EDP Sciences] [Google Scholar]
  16. R. Eymard, T. Gallouët and R. Herbin, Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
  17. R. Eymard, C. Guichard and R. Herbin, Benchmark 3D: the VAG scheme, in Finite Volumes for Complex Applications VI – Problems and Perspectives, edited by J. Fort, J. Furst, J. Halama, R. Herbin and F. Hubert. In Vol 2 of Springer Proceedings in Mathematics (2011) 213–222. [Google Scholar]
  18. R. Eymard, C. Guichard, R. Herbin and R. Masson, Vertex centred discretization of compositional multiphase darcy flows on general meshes. Comput. Geosci. 16 (2012) 987–1005. [Google Scholar]
  19. R. Huber and R. Helmig, Node-centered finite volume discretizations for the numerical simulation of multi-phase flow in heterogeneous porous media. Comput. Geosci. 4 (2000) 141–164. [Google Scholar]
  20. S. Lacroix, Y.V. Vassilevski and M.F. Wheeler, Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numer. Linear Algebra Appl. 8 (2001) 537–549. [Google Scholar]
  21. A. Lauser, C. Hager, R. Helmig and B. Wohlmuth, A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Res. 34 (2011) 957–966. [CrossRef] [Google Scholar]
  22. D.W. Peaceman, Fundamentals of Numerical Reservoir Simulations. Elsevier (1977). [Google Scholar]
  23. P. Samier and R. Masson, Implementation of a vertex centered method inside an industrial reservoir simulator – Practical issues and comprehensive comparison with CPG and PEBI grid models on a field case. SPE Reservoir Simulation Symposium (2016). [Google Scholar]
  24. R. Scheichl, R. Masson and J. Wendebourg, Decoupling and block preconditioning for sedimentary basin simulations. Comput. Geosci. 7 (2003) 295–318. [Google Scholar]
  25. E. Schmidt, Properties of Water and Steam in S.I. units. Springer-Verlag (1969). [Google Scholar]
  26. F. Xing, R. Masson and S. Lopez, Parallel numerical modeling of hybrid-dimensional compositional non-isothermal Darcy flows in fractured porous media. J. Comput. Phys. 345 (2017) 637–664. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you