Open Access
Issue
ESAIM: M2AN
Volume 53, Number 5, September-October 2019
Page(s) 1459 - 1476
DOI https://doi.org/10.1051/m2an/2019037
Published online 23 July 2019
  1. P. Amorim, P.G. LeFloch and B. Okutmustur, Finite volume schemes on Lorentzian manifolds. Comm. Math. Sc. 6 (2008) 1059–1086. [CrossRef] [Google Scholar]
  2. Y. Bakhtin and P.G. LeFloch, Ergodicity of spherically symmetric fluid flows outside of a Schwarzschild black hole with random boundary forcing. Stoch PDE: Anal. Comp. 6 (2018) 746–785. [CrossRef] [Google Scholar]
  3. T. Ceylan, P.G. LeFloch and B. Okutmustur, A finite volume method for the relativistic Burgers equation on a FLRW background spacetime. Commun. Comput. Phys. 23 (2018) 500–519. [Google Scholar]
  4. B. Cockburn, F. Coquel and P.G. LeFloch, Convergence of finite volume methods for multi-dimensional conservation laws. SIAM J. Numer. Anal. 32 (1995) 687–705. [Google Scholar]
  5. K.A. Dennison and T.W. Baumgarte, A simple family of analytical trumpet slices of the Schwarzschild spacetime, Class. Quant. Grav. 31 (2014) 117001. [CrossRef] [Google Scholar]
  6. R.J. DiPerna, Measure-valued solutions to conservation laws. Arch. Rational Mech. Anal. 88 (1985) 223–270. [CrossRef] [MathSciNet] [Google Scholar]
  7. J. Giesselman and P.G. LeFloch, Formulation and convergence of the finite volume method for conservation laws on spacetimes with boundary. Preprint arXiv:1607.03944 (2016). [Google Scholar]
  8. D. Kröner, T. Müller and L.M. Strehlau, Traces for functions of bounded variation on manifolds with applications to conservation laws on manifolds with boundary. SIAM J. Math. Anal. 47 (2015) 3944–3962. [CrossRef] [Google Scholar]
  9. S. Kruzkov, First-order quasilinear equations with several space variables. Math. USSR Sb. 10 (1970) 217–243. [Google Scholar]
  10. P.G. LeFloch and H. Makhlof, A geometry-preserving finite volume scheme for compressible fluids on Schwarzschild spacetime. Commun. Comput. Phys. 15 (2014) 827–852. [Google Scholar]
  11. P.G. LeFloch, H. Makhlof and B. Okutmustur, Relativistic Burgers equations on curved spacetimes. Derivation and finite volume approximation. SIAM J. Numer. Anal. 50 (2012) 2136–2158. [Google Scholar]
  12. P.G. LeFloch and B. Okutmustur, Hyperbolic conservation laws on spacetimes. A finite volume scheme based on differential forms. Far East J. Math. Sci. 31 (2008) 49–83. [Google Scholar]
  13. P.G. LeFloch and S. Xiang, Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime. J. Math. Pures Appl. 106 (2016) 1038–1090. [Google Scholar]
  14. P.G. LeFloch and S. Xiang, Weakly regular fluid flows with bounded variation on the domain of outer communication of a Schwarzschild black hole spacetime. II. J. Math. Pure Appl. 122 (2019) 272–317. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you