Open Access
Volume 54, Number 3, May-June 2020
Page(s) 1053 - 1071
Published online 07 May 2020
  1. Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods. SIAM J. Numer. Anal. 48 (2010) 1136–1162. [Google Scholar]
  2. N. Almulla, R. Ferreira and D. Gomes, Two numerical approaches to stationary mean-field games. Dyn. Games Appl. 7 (2017) 657–682. [Google Scholar]
  3. R. Andreev, Preconditioning the augmented lagrangian method for instationary mean field games with diffusion. SIAM J. Sci. Comput. 39 (2017) A2763–A2783. [Google Scholar]
  4. K.J. Arrow, L. Hurwicz and H. Uzawa, Studies in Linear and Non-linear Programming, Stanford University Press, Stanford, CA (1958). [Google Scholar]
  5. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [Google Scholar]
  6. J.-D. Benamou and G. Carlier, Augmented lagrangian methods for transport optimization, mean field games and degenerate elliptic equations. J. Optim. Theory Appl. 167 (2015) 1–26. [Google Scholar]
  7. M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems. Acta Numer. 14 (2005) 1–137. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Bertucci, Optimal stopping in mean field games, an obstacle problem approach. J. Math. Pures Appl. 120 (2018) 165–194. [Google Scholar]
  9. C. Bertucci, Fokker–Planck equations of jumping particles and mean field games of impulse control. Preprint arXiv:1803.06126 (2018). [Google Scholar]
  10. J.H. Bramble, J.E. Pasciak and A.T. Vassilev, Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34 (1997) 1072–1092. [Google Scholar]
  11. L.M. Briceno-Arias, D. Kalise and F.J. Silva, Proximal methods for stationary mean field games with local couplings. SIAM J. Control Optim. 56 (2018) 801–836. [Google Scholar]
  12. L. Briceño-Arias, D. Kalise, Z. Kobeissi, M. Lauriéere, Á. Gonzáalez and F.J. Silva, On the implementation of a primal-dual algorithm for second order time-dependent mean field games with local couplings. ESAIM: PROCS. 65 (2019) 330–348. [CrossRef] [Google Scholar]
  13. P. Cardaliaguet, Weak solutions for first order mean field games with local coupling. In: Analysis and Geometry in Control Theory and its Applications. Springer (2015) 111–158. [Google Scholar]
  14. P. Cardaliaguet, F. Delarue, J.-M. Lasry and P.-L. Lions, The Master Equation and the Convergence Problem in Mean Field Games:(AMS-201). In: Vol. 381of Annals of Mathematics Studies. Princeton University Press (2019). [Google Scholar]
  15. R. Carmona and F. Delarue, Probabilistic Theory of Mean Field Games with Applications I-II. Springer (2017). [Google Scholar]
  16. J.A. Carrillo, K. Craig, L. Wang, C. Wei, Primal dual methods for wasserstein gradient flows. Preprint arXiv:1901.08081 (2019). [Google Scholar]
  17. H.C. Elman and G.H. Golub, Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31 (1994) 1645–1661. [Google Scholar]
  18. R. Ferreira and D. Gomes, Existence of weak solutions to stationary mean-field games through variational inequalities. SIAM J. Math. Anal. 50 (2018) 5969–6006. [CrossRef] [Google Scholar]
  19. M. Fortin and A. Fortin, A generalization of Uzawa’s algorithm for the solution of the navier-stokes equations. Commun. Appl. Numer. Methods 1 (1985) 205–208. [CrossRef] [Google Scholar]
  20. M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop Mckean–Vlasov systems and the nash certainty equivalence principle. Commun. Inf. Sys. 6 (2006) 221–252. [Google Scholar]
  21. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  22. G.M. Kobelkov and M.A. Olshanskii, Effective preconditioning of Uzawa type schemes for a generalized Stokes problem. Numer. Math. 86 (2000) 443–470. [Google Scholar]
  23. J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. [CrossRef] [MathSciNet] [Google Scholar]
  24. P.-L. Lions, Cours au college de france. Available from: (2020). [Google Scholar]
  25. J.-L. Lions and G. Stampacchia, Variational inequalities. Commun. Pure Appl. Math. 20 (1967) 493–519. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you