Open Access
Issue
ESAIM: M2AN
Volume 54, Number 3, May-June 2020
Page(s) 775 - 810
DOI https://doi.org/10.1051/m2an/2019050
Published online 01 April 2020
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces, In: Vol. 140 of Pure and Applied Mathematics. Elsevier Science (2003). [Google Scholar]
  2. J.M. Ball, Y. Capdeboscq and B.T. Xiao, On uniqueness for time harmonic anisotropic Maxwell’s equations with piecewise regular coefficients. Math. Models Methods Appl. Sci. 22 (2012) 1–9. [Google Scholar]
  3. Y. Boubendir, X. Antoine and C. Geuzaine, A quasi-optimal non-overlapping domain decomposition algorithm for the Helmholtz equation. J. Comput. Phys. 231 (2012) 262–280. [Google Scholar]
  4. Y. Boubendir, C. Jerez-Hanckes, C. Pérez-Arancibia and C. Turc, Domain Decomposition Methods based on quasi-optimal transmission operators for the solution of Helmholtz transmission problems. Preprint arXiv:1710.02694 (2017) [Google Scholar]
  5. F. Collino, S. Ghanemi and P. Joly, Domain decomposition method for harmonic wave propagation: a general presentation. Comput. Methods Appl. Math. 184 (2000) 171–211. [Google Scholar]
  6. F. Demengel and G. Demengel, Functional Spaces for the Theory of Elliptic Partial Differential Equations. Springer-Verlag, London (2012). [Google Scholar]
  7. B. Després, Domain decomposition method and the Helmholtz problem (Part II)In: Second international conference on mathematical and numerical aspects of wave propagation. SIAM (1993) 197–206. [Google Scholar]
  8. E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional sobolev spaces. Preprint arXiv:1104.4345 (2011). [Google Scholar]
  9. M.J. Gander and H. Zhang, A Class of Iterative Solvers for the Helmholtz Equation: Factorizations, Sweeping Preconditioners, Source Transfer, Single Layer Potentials, Polarized Traces, and Optimized Schwarz Methods, Preprint arXiv:1610.02270 (2016). [Google Scholar]
  10. M. Gander, L. Halpern and F. Magoulès, An optimized Schwarz method with two-sided Robin transmission conditions for the Helmholtz equation. Int. J. Numer. Methods Fluids 55 (2007) 163–175. [Google Scholar]
  11. M. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (2002) 38–60. [Google Scholar]
  12. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Society for Industrial and Applied Mathematics (2011). [Google Scholar]
  13. S.P. Han, A globally convergent method for nonlinear programming. J. Optim. Theory and Appl. 22 (1977) 297–309. [Google Scholar]
  14. P. Joly, F. Collino, M. Lecouvez and B. Stupfel, Quasi-local transmission conditions for non-overlapping domain decomposition methods for the helmholtz equation. C.R. Phys. 4310 (2014) 385–478. [Google Scholar]
  15. M. Lecouvez, Méthodes itératives de décomposition de domaine sans recouvrement avec convergence géométrique pour l’équation de Helmholtz, Ph.D. thesis, Mathématiques appliquées Palaiseau, Ecole polytechnique, Thèse de doctorat dirigée par Joly Patrick (2015). [Google Scholar]
  16. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press (2000). [Google Scholar]
  17. J.-C. Nedelec, Acoustic and Electromagnetic Equations: Integral Representations for Harmonic Problems. Springer-Verlag (2001). [Google Scholar]
  18. Z. Peng, V. Rawat and J.-F. Lee, One way domain decomposition method with second order transmission conditions for solving electromagnetic wave problems, J. Comput. Phys. 229 (2010) 1181–1197. [Google Scholar]
  19. M.J.D. Powell, A fast algorithm for nonlinearly constrained optimization calculations, edited by G.A. Watson. In: Numerical Analysis, Vol. 630 of Lecture Notes in Mathematics. Springer, Berlin Heidelberg (1978) 144–157. [Google Scholar]
  20. E.M. Stein, Singular integrals and differentiability properties of functions. In Princeton mathematical series. Princeton University Press (1970). [Google Scholar]
  21. O. Steinbach and M. Windisch, Stable boundary element domain decomposition methods for the helmholtz equation. Numer. Mathematik 118 (2011) 171–195. [Google Scholar]
  22. L.N. Trefethen and L. Halpern, Well-posedness of one-way wave equations and absorbing boundary conditions, Math. Computation 47 (1986) 421–435. [Google Scholar]
  23. M. Vouvakis, K. Zhao, S.-M. Seo and J.-F. Lee, A domain decomposition approach for non-conformal couplings between finite and boundary elements for unbounded electromagnetic problems in R3. J. Comput. Phys. 225 (2007) 975–994. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you