Open Access
Volume 54, Number 6, November-December 2020
Page(s) 1917 - 1949
Published online 16 September 2020
  1. C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d’approximation; application à l’équation de transport. Ann. Sci. Ec. Norm. Sup. Ser. 4 3 (1970) 185–233. [Google Scholar]
  2. H. Beirão Da Veiga, Existence results in Sobolev spaces for a stationary transport equation. Ricerche Mat. Suppl. XXXVI (1987) 173–184. [Google Scholar]
  3. S. Brenner and R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed.. Springer (2008). [Google Scholar]
  4. J. Coatléven, Semi hybrid method for heterogeneous and anisotropic diffusion problems on general meshes. ESAIM: M2AN 49 (2015) 1063–1084. [CrossRef] [EDP Sciences] [Google Scholar]
  5. J. Coatléven, A virtual volume method for heterogeneous and anisotropic diffusion-reaction problems on general meshes. ESAIM: M2AN 51 (2017) 797–824. [CrossRef] [EDP Sciences] [Google Scholar]
  6. B. Cockburn, B. Dong and J. Guzmán, Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46 (2008) 1250–1265. [Google Scholar]
  7. D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Springer (2012). [CrossRef] [Google Scholar]
  8. R.J. DiPerna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 98 (1989) 511–547. [Google Scholar]
  9. R.H. Erskine, T.R. Green, J.A. Ramirez and L.H. MacDonald, Comparison of grid-based algorithms for computing upslope contributing area. Water Resour. Res. 42 (2006) W09416. [Google Scholar]
  10. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, edited by P.G. Ciarlet and J.-L. Lions. In: Handbook of Numerical Analysis: Techniques of Scientific Computing, Part III. North-Holland, Amsterdam (2000) 713–1020. [Google Scholar]
  11. R. Eymard, T. Gallouët and R. Herbin, A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis. C. R. Math. Acad. Sci. Paris 344 (2007) 403–406. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Eymard, T. Gallouët and R. Herbin, Discretisation of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilisation and hybrid interfaces. IMA J. Numer. Anal. 30 (2010) 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Eymard, C. Guichard and R. Herbin, Benchmark 3D: the vag scheme. In: Vol. 2 of Springer Proceedings in Mathematics, FVCA6, Prague (2011) 213–222. [Google Scholar]
  14. R. Eymard, C. Guichard and R. Herbin, Small-stencil 3D schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2011) 265–290. [Google Scholar]
  15. E. Fernández-Cara, F. Guillén, R.R. Ortega, Mathematical modeling and analysis of visco-elastic fluids of the oldroyd kind, edited by P.G. Ciarlet and J.L. Lions. In: Vol. VIII of Handbook of Numerical Analysis: Numerical Methods for Fluids, Part 2. North-Holland, Amsterdam (2002) 543–661. [Google Scholar]
  16. T.G. Freeman, Calculating catchment area with divergent flow based on a regular grid. Comput. Geosci. 17 (1991) 413–422. [Google Scholar]
  17. V. Girault and L. Tartar, lp and w1,p regularity of the solution of a steady transport equation. C. R. Acad. Sci. Paris, Ser. I 348 (2010) 885–890. [CrossRef] [Google Scholar]
  18. P. Holmgren, Multiple flow direction algorithms for runoff modelling in grid based elevation models: an empirical evaluation. Hydrol. Process. 8 (1994) 327–334. [Google Scholar]
  19. C. Johnson, J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comput. 46 (1986) 1–26. [Google Scholar]
  20. P. Lesaint and P.A. Raviart, On a finite element method for solving the neutron transport equation. Publ. Math. Inf. Rennes S 4 (1974) 1–40. [Google Scholar]
  21. C. Qin, A.-X. Zhu, T. Pei, B. Li, C. Zhou and L. Yang, An adaptive approach to selecting a flow-partition exponent for a multiple-flow-direction algorithm. Int. J. Geog. Inf. Sci. 21 (2007) 443–458. [CrossRef] [Google Scholar]
  22. P. Quinn, K. Beven, P. Chevallier snd O. Planchon, The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol. Process. 5 (1991) 59–79. [Google Scholar]
  23. A. Richardson, C.N. Hill and J.T. Perron, IDA: an implicit, parallelizable method for calculating drainage area. Water Resour. Res. 50 (2013) 4110–4130. [Google Scholar]
  24. J. Seibert and B.L. McGlynn, A new triangular multiple flow direction algorithm for computing upslope areas from gridded digital elevation models. Water Resour. Res. 43 (2007) W04501. [Google Scholar]
  25. D.G. Tarboton, A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res. 33 (1997) 309–319. [Google Scholar]
  26. D.M. Wolock and G.J. McCabe Jr, Comparison of single and multiple flow direction algorithms for computing topographic parameters in topmodel, Water Resour. Res. 31 (1995) 1315–1324. [Google Scholar]
  27. Q. Zhou, P. Pilesjö and Y. Chen, Estimating surface flow paths on a digital elevation model using a triangular facet network, Water Resour. Res. 47 (2011) W07522. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you