Free Access
Issue |
ESAIM: M2AN
Volume 55, Number 1, January-February 2021
|
|
---|---|---|
Page(s) | 329 - 356 | |
DOI | https://doi.org/10.1051/m2an/2020069 | |
Published online | 18 February 2021 |
- M. Baccouch, A local discontinuous Galerkin method for the second-order wave equation. Comput. Methods Appl. Mech. Eng. 209 (2012) 129–143. [Google Scholar]
- J.C. Butcher, Numerical Methods for Ordinary Differential Equations, 2nd edition. John Wiley & Sons (2008). [Google Scholar]
- Y. Cheng, C.S. Chou, F. Li and Y. Xing, L2 stable discontinuous Galerkin methods for one dimensional two-way wave equations. Math. Comput. 86 (2017) 121–155. [Google Scholar]
- E.T. Chung and B. Engquist, Optimal discontinuous Galerkin methods for the acoustic wave equation in higher dimensions. SIAM J. Numer. Anal. 47 (2009) 3820–3848. [Google Scholar]
- P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland (1978). [Google Scholar]
- B. Cockburn and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. general framework. Math. Comput. 52 (1989) 411–435. [Google Scholar]
- B. Cockburn and C.-W. Shu, The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws. Math. Model. Numer. Anal. 25 (1991) 337–361. [Google Scholar]
- B. Cockburn and C.-W. Shu, The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141 (1998) 199–224. [Google Scholar]
- B. Cockburn, S.-Y. Lin and C.-W. Shu, TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84 (1989) 90–113. [Google Scholar]
- B. Cockburn, S. Hou and C.-W. Shu, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54 (1990) 545–581. [Google Scholar]
- B. Cockburn, G. Kanschat, I. Perugia and D. Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39 (2001) 264–285. [Google Scholar]
- G.C. Cohen, Higher-order numerical methods for transient wave equations. In: Scientific Computation, Springer-Verlag, Berlin (2002). With a foreword by R. Glowinski. [Google Scholar]
- D.R. Durran, Numerical methods for wave equations in geophysical fluid dynamics. In: Vol. 32 of Texts in Applied Mathematics. Springer, New York (1999). [Google Scholar]
- D. Gottlieb and J.S. Hesthaven, Spectral methods for hyperbolic problems. J. Comput. Appl. Math. 128 (2001) 83–131. [Google Scholar]
- D. Gottlieb and S.A. Orszag, Numerical analysis of spectral methods: theory and applications. In: CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26. Society for Industrial and Applied Mathematics, Philadelphia, PA (1977). [Google Scholar]
- S. Gottlieb, C.-W. Shu and E. Tadmor, Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
- M.J. Grote, A. Schneebeli and D. Schötzau, Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408–2431. [Google Scholar]
- N.A. Kampanis, J. Ekaterinaris and V. Dougalis, Effective Computational Methods for Wave Propagation. Chapman & Hall/CRC (2008). [Google Scholar]
- R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge (2002). [Google Scholar]
- Y. Liu, C.-W. Shu, E. Tadmor and M. Zhang, Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45 (2007) 2442–2467. [Google Scholar]
- Y. Liu, C.-W. Shu, E. Tadmor and M. Zhang, L2 stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. ESAIM: M2AN 42 (2008) 593–607. [CrossRef] [EDP Sciences] [Google Scholar]
- Y. Liu, C.-W. Shu and M. Zhang, Optimal error estimates of the semidiscrete central discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 56 (2018) 520–541. [Google Scholar]
- Y. Liu, C.-W. Shu and M. Zhang, Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using Pk elements. ESAIM: M2AN 54 (2020) 705–726. [EDP Sciences] [Google Scholar]
- X. Meng, C.-W. Shu and B. Wu, Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85 (2016) 1225–1261. [Google Scholar]
- W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, Los Alamos Scientific Laboratory report LA-UR-73-479 (1973). [Google Scholar]
- M.A. Reyna and F. Li, Operator bounds and time step conditions for DG and central DG methods. J. Sci. Comput. 62 (2015) 532–554. [Google Scholar]
- Y. Xing, C.-S. Chou and C.-W. Shu, Energy conserving local discontinuous Galerkin methods for wave propagation problems. Inverse Prob. Imaging 7 (2013) 967–986. [Google Scholar]
- Y. Xu and C.-W. Shu, Optimal error estimates of the semidiscrete local discontinuous galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50 (2012) 79–104. [Google Scholar]
- Z. Xu and Y. Liu, New central and central discontinuous Galerkin schemes on overlapping cells of unstructured grids for solving ideal magnetohydrodynamic equations with globally divergence-free magnetic field. J. Comput. Phys. 327 (2016) 203–224. [Google Scholar]
- Y. Yang, X. Cai and J.-M. Qiu, Optimal convergence and superconvergence of semi-Lagrangian discontinuous Galerkin methods for linear convection equations in one space dimension. Math. Comput. 89 (2020) 2113–2139. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.